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PREFACE

Aeronautical and space propulsion systems structures technology has been the
mission of the Structures Division at the NASA Lewis Research Center for many
years. We have carried out both fundamental and applied research projects in
pursuit of that mission. We have worked cooperatively with members of the in-
dustrial and academic communities in order to strengthen our ties to both the
discipline rigors found in university research and the needs of industrial
design engineers. It is from this perspective that we have prepared the mate-
rial for this symposium. And we hope to transfer our technology beyond our
usual industrial partners.

The technology required for the reliable, high-performance, lightweight struc-
tures needed for aerospace propulsion is among the most complex and challeng-
ing facing the design engineer. We provide a comprehensive review of the sta-
tus of the technology, a review of our recent contributions, and a flavor of
the directions for the future. The symposium is meant to be as informative as
possible, with the intent to establish new and broader lines for technology
transfer. We encourage continued interaction and the chance to exchange infor-
mation, ideas, and problems with the intention of improving the capability of
aerospace propulsion systems.

Our two-day symposium and exposition, LST '88, is expected to attract 300 tech-
nologists from all walks of structurally related engineering. The 83 techni-
cal contributions have been created by over 100 authors who are respected
authorities in their fields. Fifty percent of these are NASA civil servants,
and twenty-five percent are on-site contractors and grantees, National
Research Council associates, Institute for Computational Mechanics in Propul-
sion (ICOMP) associates, and U.S. Army Aviation Research and Technology Activi-
ty (AVSCOM) personnel. The balance are from industry and academia.

It is a well-rounded symposium, and the proceedings should be a valuable re-
source for several years to come. The format is easy to access and extract
information from. Each topic within a presentation is self-contained on a sin-
gle page. The topic title appears at the top of the page followed by an ex-
tended figure caption, and the figure is located at the bottom of the page.
Considerable effort has been expended in streamlining the presentations and
freeing them of extraneous information so as to make them clear to the poten-
tial user - YOU. References are cited for more detailed followup of a particu-
lar topic. On-site personnel are also willing to lend assistance in answering
questions and resolving problems that need clarification.

Lester D. Nichols
Chief, Structures Division
NASA Lewis Research Center
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CERAMIC COMPONENT RELIABILITY

SESSION OVERVIEW

John P. Gyekenyesi
Structural Integrity Branch
NASA Lewis Research Center

Ceramics and ceramic matrix composites (CMC) offer significant potential for
raising the thrust-to-weight ratio of gas turbine engines by enabling higher
cycle temperatures with the use of refractory, high specific strength material
systems. Silicon based ceramics, such as silicon carbide (SiC) and silicon
nitride (Si3Ny), offer the most high-temperature strength, thermal stability,
and resistance to thermal shock and oxid

tion. The structural promise of these

materials in monolithic form is being evaluated in engine demonstration pro-
grams such as the DOE-sponsored Advanced Gas Turbine (AGT) Project. The objec-
tive is to develop a competitive fuel-efficient gas turbine automobile engine
having an all ceramic hot section.

Monolithic ceramics have yet to be applied in aircraft engines, chiefly because
of their poor structural reliability and reproducibility. Because they lack
fracture toughness, these materials are very sensitive to microscopic cracks or
flaws. Since conventional ceramic processing will unavoidably lead to both in-
trinsic and external surface imperfections, ceramics vary widely in strength,
and their load carrying capability depends greatly on their geometric size.

There are several approaches to make ceramics stronger, tougher, and more reli-
able. Strength can be improved and its scatter reduced by improved processing.
Adding a reinforcing or toughening phase can improve fracture toughness and
decrease the sensitivity of the matrix to flaws. The reinforcing ceramic sec-
ond phase can have a variety of shapes, ranging from nearly spherical parti-
cles, through whiskers and chopped fibers with various length-to-diameter (L/D)
ratios, to continuous fibers. Compact particles and whiskers lend themselves
to traditional ceramic processing methods, with a high-volume production poten-
tial and a material that can range from fully isotropic to that displaying
anisotropic thermoelastic properties. Continuous small diameter fibers, how-
ever, reinforce ceramics more efficiently since their orientation in the direc-
tion of the principal load significantly enhances the matrix cracking strain,
as well as the ultimate load carrying capability of the composite. In addi-
tion, through optimized volume fraction and fiber-matrix interface behavior,
the effective composite fracture toughness can be greatly increased, whereby
the composite displays metal-like, graceful failure response before ultimate
fracture.

In the past, most components using structural ceramics and CMC were designed by
"trial and error", since the emphasis was on feasibility demonstration rather
than on fully understanding the parameters controlling structural response. In
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addition, the continuous change and development of these material systems and
the lack of standardized design data minimized the emphasis on mathematical
modeling, both for analysis of deformation (micromechanics) and of failure
(macromechanics). Fast fracture, durability, environmental response, impact
tolerance, and life prediction are presently being addressed for monolithics,
but very little has been done for the toughened and continuous fiber rein-
forced CMC's. The objective of our fracture analysis and brittle material
design program is to investigate appropriate structural models and implement
them in general purpose analysis codes for use by industry in designing heat
engine components. The use of computers, linear elastic fracture mechanics
(LEFM), and statistics are key ingredients to any deformation and failure stud-
ies of these brittle systems, since it is important to have a mechanistic
rather than a phenomenoclogical understanding of the material's behavior. It
is the use of these disciplines, which are not usually a part of the mechani-
cal engineer's curriculum, that makes brittle-material design unique and dif-
ferent from that used with traditional, forgiving materials like metals and
plastics. At the Lewis Research Center our emphasis is on fast fracture behav-
ior of isotropic monolithics, of toughened isotropic and anisotropic ceramics,
and of the fully anisotropic laminated and woven composites. Our progress for
fast fracture of monolithics has been extensive, so that issues of fatigue
(subcritical crack growth) will also be addressed at Lewis in the near fu-
ture. Our program with the other material systems, however, is less than a
year old, and progress with them is difficult to forecast.

In this session, you will hear three presentations, each describing the fast
fracture problem in monolithics, whisker toughened ceramics, and laminated
CMC's. In addition, the prediction of thermoelastic properties of toughened
ceramics will be emphasized since the micromechanics of isotropic ceramics and
laminated composites, at least in the linear regime, will be identical to those
previously developed for other materials. Work for woven composites, both in
micromechanics and macromechanics, is only in the planning stage, although the
importance of these engineered materials is evident from the successes of the
world's most mature CMC, the French Societe Europeenne de Propulsion's (SEP's)
SiC/SiC cerasep.




STRUCTURAL CERAMICS IN REVIEW (UP TO 3000 °F)

A. MONOLITHICS
* HIGH-TEMPERATURE STRENGTH, LOW DENSITY, ISOTROPIC BEHAVIOR
* GOOD RESISTANCE TO THERMAL SHOCK, OXIDATION, CORROSION
¢ TRADITIONAL, NET SHAPE, HIGH-VOLUME PROCESSING
* LOW FRACTURE TOUGHNESS, CATASTROPHIC FAILURE, LOW RELIABILITY

B. PARTICULATE AND WHISKER TOUGHENED CERAMICS (L/D < 30)
* SAME AS ABOVE EXCEPT FOR MODERATE IMPROVEMENTS IN FRACTURE
TOUGHNESS AND RELIABILITY (UP TO 100% INCREASE IN Kc)
* VARIES FROM ISOTROPIC TO FULLY ANISOTROPIC BEHAVIOR

C. CONTINUOUS FIBER REINFORCED CERAMICS

* ANISOTROPIC RESPONSE WITH FULL TAILORING POTENTIAL

¢ GREATLY IMPROVED TOUGHNESS WITH INCREASED TOLERANCE TO FLAWS,
IMPROVED RELIABILITY, AND GRACEFUL FAILURE

* MUCH MORE DIFFICULT TO PROCESS, REQUIRES OPTIMUM INTERFACE AND
IMPROVEMENTS IN PERFORMANCE OF FIBERS

CD-88-31726

CERAMIC COMPONENTS RELIABILITY ANALYSIS

A. MONOLITHICS
¢ MICROMECHANICS AND STRUCTURAL ANALYSIS—WELL IN HAND
o FAST FRACTURE—REASONABLY UNDERSTOOD, LIMITED DESIGN CODES

o LIFE PREDICTION (FATIGUE, CREEP, OXIDATION, IMPACT)—SOME MODELS EXIST
BUT NEED TO BE STUDIED AND PROGRAMMED

B. PARTICULATE AND WHISKER TOUGHENED CERAMICS
¢ MICROMECHANICS AND STRUCTURAL ANALYSIS—SOME MODELS EXIST
¢ FAST FRACTURE—MOSTLY PHENOMENOLOGICAL
e LIFE PREDICTION—MOSTLY EMPIRICAL

C. CONTINUOUS FIBER REINFORCED CERAMICS

1. LAMINATED COMPOSITES
¢ MICROMECHANICS AND STRUCTURAL ANALYSIS—WELL IN HAND (LINEAR REGIME)
* FAST FRACTURE—SOME MODELS EXIST BUT NEED TO BE STUDIED
¢ LIFE PREDICTION—MOSTLY EMPIRICAL

2. WOVEN COMPOSITES
* MICROMECHANICS AND STRUCTURAL ANALYSIS—SOME MODELS EXIST
¢ FAST FRACTURE—MOSTLY PHENOMENOLOGICAL
e LIFE PREDICTION—MOSTLY EMPIRICAL

CD-88-31727
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MONOLITHIC CERAMIC ANALYSIS USING THE SCARE PROGRAM

Jane M. Manderscheid
Structural Integrity Branch
NASA Lewis Research Center

ABSTRACT

The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer
program calculates the fast fracture reliability of monolithic ceramic compo-
nents. The code is a post-processor to the MSC/NASTRAN general purpose finite
element program. SCARE automatically accepts the MSC/NASTRAN output necessary
to compute reliability. This includes element stresses, temperatures, volumes,
and areas. The SCARE program computes two-parameter Weibull strength distribu-—
tions from input fracture data for both volume and surface flaws. The distri-
butions can then be used to calculate the reliability of geometrically complex
components subjected to multiaxial stress states. Several fracture criteria
and flaw types are available for selection by the user, including out-of-plane
crack extension theories. The theoretical basis for the reliability calcula-
tions was proposed by Batdorf. These models combine linear elastic fracture
mechanics (LEFM) with Weibull statistics to provide a mechanistic failure cri-
terion. Other fracture theories included in SCARE are the normal stress aver-
aging technique and the principle of independent action. The objective of this
presentation is to summarize these theories, including their limitations and
advantages, and to provide a general description of the SCARE program, along

with example problems.
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OUTLINE

Designing with ceramics requires a new approach involving statistics. Inherent
to this method is the realization that any component will have a finite fail-
ure probability; that is, no design is fail-safe. Methods of quantifying this
failure probability have been investigated and refined. These theories have
been programmed into SCARE. The accuracy of the FORTRAN coding and the mathe-
matical modeling has been verified by analytical and experimental methods.
Using SCARE a design engineer can easily calculate the change in reliability
due to a design change. This can lead to more efficient material utilization
and system efficiency.

 BASIC CONCEPTS OF BRITTLE MATERIAL DESIGN

e STATISTICAL FRACTURE THEORIES:

1. BASED ON STATISTICS AND OBSERVATIONS:
UNIAXIAL WEIBULL, NORMAL STRESS AVERAGING, PIA

2. BASED ON STATISTICS AND FRACTURE MECHANICS: BATDORF
e THE SCARE PROGRAM
* VERIFICATION AND APPLICATION OF SCARE
e SUMMARY

CD-88-32561
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CERAMICS FOR ENGINES

Structural ceramics have been utilized for various test engine components since
the early 1970's. This work has been sustained by the unique properties that
ceramics offer in the areas of high-temperature strength, environmental resist-
ance, and low density. These characteristics can result in large benefits in
system efficiency and performance. However, the brittle nature of ceramics
causes a high sensitivity to microscopic flaws and catastrophic fracture. The
subsequent low reliability of ceramic components has limited their application
in large scale engine production.

CERAMIC PROPERTIES
— HIGH-TEMPERATURE STRENGTH
— ENVIRONMENTAL RESISTANCE
— LOW DENSITY

\

IMPROVED EFFICIENCY AND
PERFORMANCE

BUT

e HIGH CERAMIC SENSITIVITY TO FLAWS
 BRITTLE CATASTROPHIC FAILURE

\

e LOW RELIABILITY
e LIMITED APPLICATION

CD-88-32562




BRITTLE MATERIAL DESIGN

The design of ceramics differs from that of ductile metals in that ceramic
materials are unable to redistribute high local stresses induced by inherent

flaws.

Random flaw size and orientation require a probabilistic analysis.

The first step of a probabilistic design methodology is the determination of a
temperature-dependent fracture strength distribution from flexural or tensile
test specimens. From this data, the reliability for a given component geome-

try
tic
The
but

and loading is then computed. An important characteristic of probabilis-
design is that the stress distribution over the entire volume is needed.
design is not necessarily governed by the most highly stressed location,
by the entire stress field.

e CERAMICS ARE BRITTLE AND HAVE MANY FLAWS
e RANDOM FLAW SIZE AND ORIENTATION REQUIRE PROBABILISTIC METHOD

e GENERAL APPROACH:

SIMPLE TESTS COMPLEX PREDICTIONS
e REQUIRES ENTIRE STRESS FIELD, NOT MAXIMUM STRESS POINT

CD-88-32563
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STATISTICAL FRACTURE THEORIES

A common aspect of any weakest link theory is that the component volume and/or
surface area of a stressed material will affect its strength, whereby larger
components result in lower average strengths. This observation led Weibull
(1939) to propose a phenomenological model to describe the scatter in brittle
material fracture strengths. To predict material response under multiaxial
stresses Weibull suggested averaging the tensile normal stress in all direc-
tions. As this approach is arbitrary and involves tedious numerical integra-
tion, other approaches have been subsequently introduced. The most simplistic
is the principle of independent action (PIA) model (Barnett, 1967, and
Freudenthal, 1968). The PIA theory assumes that each tensile principal stress
contributes to the failure probability as if no other stress were present.
Finally, Batdorf and Crose (1974) incorporated LEFM with the weakest link
theory to predict failure on a mechanistic basis. The model was extended to
account for mixed-mode fracture by Batdorf and Heinisch (1978). All of these
models are available in the SCARE program.

WEAKEST LINK SIZE_ STRESS STATE COMPUTATIONAL  THEORETICAL
FRACTURE MODEL ~ EFFECT  EFFECTS SIMPLICITY BASIS
WEIBULL (1939) YES | UNIAXIAL SIMPLE | PHENOMENOLOGICAL
NORMAL STRESS
L YES | MULTIAXIAL |  COMPLEX | PHENOMENOLOGICAL
PRINCIPLE OF MAXIMUM PRINCIPAL
INDEPENDENT YES | MULTIAXIAL SIMPLE
N o) STRESS THEORY
BATDORF LINEAR ELASTIC
(SHEAR-INSENSITIVE, 1974) | YES | MULTIAXIAL |  COMPLEX FRACTURE
(SHEAR-SENSITIVE, 1978) MECHANICS
CD-88-32564



WEIBULL DISTRIBUTION

The Weibull distribution is a key ingredient for weakest link fracture theo-
ries. As the number of flaws present in a structure is proportional to its
volume, the failure probability increases with both the applied stress and the
material volume. The Weibull failure probability is dependent on three statis-
tical parameters; the Weibull modulus m, the scale parameter o4, and the
threshold strength o,. The Weibull modulus is indicative of strength varia-
bility, with smaller values representing a larger variation. The scale parame-
ter, or normalizing stress, is related to the mean strength. The threshold
strength is usually taken as zero because of limited experimental data and the
mathematical simplicity of the resultant equation. A similar form of the
Weibull distribution has been developed for surface flaw induced fracture,
with corresponding surface material parameters.

FAILURE PROBABILITY FOR VOLUMETRIC FLAWS IN UNIAXIAL TENSION

g=—0
Pi=1-EXP | — M| (0>
f v

%

P;=0 (e=ay)

o APPLIED TENSILE STRESS

o, SCALE PARAMETER

o, THRESHOLD STRENGTH

m WEIBULL MODULUS

V  VOLUME OF STRESSED MATERIAL
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LIMITATIONS OF THE DIRECT STATISTICAL APPROACH

Several limitations are inherent to a purely statistical approach.

One prob-

lem occurs when the design stress is below the range of experimental data.
Extrapolation of the Weibull distribution into this regime may yield erroneous

results if other phenomena are present.

When two flaw populations exist con-

currently, but only one is active in the strength regime tested, the predicted

failure probability may be low (Johnson, 1983).

Further, if the threshold

strength is not zero, the strength may be underestimated (Shih, 1980).
Finally, an approach based only on statistics can account for stress state

effects only in an empirical fashion.

DESIGN ASSUMED ZERO /.
STRESS, THRESHOLD
a4 STRENGTH -~
| g ;
! /{“\ DATA
| RANGE
I, /
|/ /
/ /-ASSUMED NON-ZERO
/"~ EXTRAPOLATION RANGE | THRESHOLD STRENGTH
I
BASIC DATA NON-ZERO
THRESHOLD STRENGTH
CONCURRENT 4 BIAXIAL ~
A AND B~_ ’ \

m=95

~

A
/ ~POPULATION A
/ m=10

7
7 POPULATION B

"~ UNIAXIAL
Va4
/7

UNDETECTED FLAW
POPULATIONS

STRESS STATE EFFECTS
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BATDORF FRACTURE THEORY

Recognizing that brittle fracture is governed by LEFM, Batdorf proposed that
reliability predictions should be based on a combination of the weakest link
theory and fracture mechanics. Conventional fracture mechanics dictates that
both the size of the critical crack and its orientation relative to the applied
loads determine the fracture stress. However, with ceramics the small critical
flaw size and the large number of flaws prevent determination of the critical
flaw, let alone its size and orientation. Instead, the combined probability

of the critical flaw being within a certain size range and being oriented so
that it may cause fracture is caiculated. As flaw sizes correspond to strength
levels and since strength is easier to measure than size for these microscopic
flaws, the probability of a crack existing within a critical strength range is
determined. This involves the derivative of the Batdorf crack density function
which is expressed using the Weibull parameters obtained in uniaxial testing.

M/79\dN
Pf - 1 - EXP - dV el do'cr
v 0 47l' dO’cr

INVOLVES TWO PROBABILITIES: dN
(1) P [EXISTENCE OF A CRACK IN A GIVEN CRITICAL STRENGTH RANGE] = dVd— dog,

Ocr

N(m,og,0,) BATDORF CRACK DENSITY FUNCTION (MATERIAL PROPERTY)
o¢r REMOTE, NORMALLY APPLIED, FRACTURE STRESS OF A CRACK

Q
(2) P [ORIENTATION OF A CRACK SUCH THAT op = og(] = .
us

og CRACK EFFECTIVE STRESS (FUNCTION OF CRACK GEOMETRY AND ORIENTATION, STRESS
STATE, FRACTURE CRITERION)

Q@ SOLID ANGLE IN STRESS SPACE WHICH INCLUDES ALL CRACK NORMALS FOR
WHICH Oe = Ucr
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REPRESENTATIVE SOLID ANGLES

Fracture depends not only on the existence of a crack with a certain critical
strength, but also on the crack orientation, the far-field stress state, and
the crack shape. A collection of crack orientations can be described by a
solid angle. A solid angle is measured by its subtended surface area on a
sphere of unit radius. Therefore, the measure of the solid angle containing
all possible crack orientations is 4w, The other solid angle of intest, 0,
is defined as that angle which includes all crack normals for which o > Ocp
(Batdorf and Crose, 1974). This assumes that fracture depends on an effective
stress producing a singularity at the crack tip and that crack propagation
occurs when the effective stress is greater than or equal to the critical
stress. For uniaxial tension the effective stress is highest on cracks normal
to the applied load. Therefore, the solid angle can be measured by the sur-
face area of "polar caps' around the loading axis. The caps will decrease in

size as the critical stress is increased, until o,y = 07 and Q =0. A solid

angle representative of equibiaxial tension is also shown.

UNIAXIAL TENSION— EQUAL BIAXIAL TENSION—
TWO CONES EQUATORIAL BELT BETWEEN
~ TWO CONES
AS THE CRITICAL STRESS INCREASES, THE SOLID ANGLE DECREASES
CD-88-32568




SCARE PROCEDURAL DIAGRAM

The previously noted fracture theories have all been implemented in SCARE
(Gyekenyesi, 1986, and Gyekenyesi and Nemeth, 1987). The bulk of the input
data for SCARE comes from a finite element stress analysis and, if necessary,
heat transfer analysis of the component. MSC/NASTRAN was chosen as the pri-
mary finite element package because of its extensive capabilities and wide-
spread usage. The SCARE program can be readily modified to accept input from
other methods of stress analysis. Input specifying fracture strength data
from test specimens, usually MOR (modulus of rupture) bars, is also required.
These specimens must be separated into two categories, those which failed
because of surface flaws and those which fractured because of volume flaws.
In addition, a flaw geometry and fracture criterion must be selected. The
SCARE program then calculates the statistical parameters for both the Weibull
and Batdorf fracture models. The survival probability is calculated for both
volume and surface flaws for each element or subelement. Since the reliabil-
ity of each subelement is independent, the failure probability for a given
component under the specified load is computed.

COMPONENT GEOMETRY. LOADING,
AND MATERIAL PROPERTIES

| ' FRACTURE
STRENGTH
FINITE ELEMENT MODEL | oA
T R > SCARE
| FLAW TYPES
HEAT TRANSFER I
ANALYSTS : AND FRACTURE
[ ! WEIBULL PARAMETERS CRITERION
TEMPERATURE AT } AND CRACK DENSITY
EACH NODE | FUNCTIONS
[ | 1
ELASTIC STRESS ANALYSIS = RISK OF RUPTURE OF EACH ELEMENT
' | I
|
l ’ ; SURFACE VOLUME
VOLUME OR RELIABILITY RELIABILITY
|
STRESS STATE AT SURFACE AREA OF || l r
EACH NODE EACH ELEMENT [
| OVERALL FAST FRACTURE FAILURE
J .J I PROBABILITY OF MODEL
o= —— !
| | 3
} SCARE bo—m—-
b e e A
CD-88-325€9
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AVAILABLE FLAW TYPES AND FRACTURE CRITERIA

The diagrams below depict the flaw types and fracture criteria available in
the SCARE program. The simple statistical fracture theories, PIA and normal
stress averaging, do not require a specific crack geometry since they are not
based on fracture mechanics. On the other hand, Batdorf's fracture theory can
be used with several different mixed-mode fracture criterion and crack geome-
tries. The combination of a particular flaw shape and fracture criterion
results in an effective stress equation involving far-field normal and shear
stresses. Coplanar crack extension theories include the maximum tensile
stress theory and the total strain energy release rate theory. In reality, a
crack is not confined to grow within its plane, and out-of-plane crack exten-
sion criteria are more accurate. In SCARE, these criteria are approximated by
a simple equation (Shetty, 1987). The approach involves a semi-empirical con-
stant which is varied to model the maximum tangential stress theory, the maxi-
mum strain energy release rate theory, or experimental results. Because of
the flexibility of this equation, it is the preferred model for both volume
and surface flaws. Finally, with regard to crack geometry, semi-circular
cracks are preferred for surface imperfections, whereas penny-shaped cracks
best reflect the geometry of volume imperfections.

r SURFACE FLAWS J r VOLUME FLAWS ]

SEMI-
GRIFFITH GRIFFITH CIRCULAR NO CRACK GRIFFITH PERNY- NO CRACK
CRACK NOTCH SURFACE SHAPE CRACK SHAPED SHAPE
CRACK REQUIRED CRACK REQUIRED
r
A
7
7
Ve |
/ |
s i
TOTAL SHETTY'S PRINCIPLE TOTAL ]
STRAIN MIXED OF NORMAL MAXIMUM STRAIN :?E(ZIT)Y S :?lNClPLE NORHAL
ENERGY MODE INDEPENDENT STRESS TENSILE | | ENERGY T STRESS
RELEASE EQUATION ACTION STRESS RELEASE MODE INDEPENDEN
RATE RATE EQUATION ACTION
I | ] | | ] | ] |
I SHEAR-SENSITIVE SHEAR- INSENSITIVE AJ [7 SHEAR-SENSITIVE J SHEAR- INSENSITIVE

I i I

|
l FRACTURE CRITERIA I r FRACTURE CRITERIA J
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CODE VALIDATION

Several sample problems have been selected from the open literature to vali-
date the SCARE program. For example, a silicon nitride disk was spun to
fracture (Swank and Williams, 1981). The disk geometry is shown in the first
figure, as well as the Weibull parameters from MOR bar testing. Reliability
calculations from the SCARE code are compared to experimental results in the
second figure. The predictions from a shear-sensitive Batdorf fracture crite—
rion are closest to the experimental results. However, it should be noted

that only seven disks were tested, compared to 85 MOR specimens. This leads

to a large degree of statistical uncertainty in the disk data and may account
for the greater difference between experimental and predicted Pf at lower
failure probabilities. Rigorous testing is being conducted in an in-house pro-
gram to gather more data for code validation purposes. Furthermore, the shear-
insensitive fracture models have been favorably tested against proprietary
codes with these capabilities.

ROTATING ANNULAR DISK
VOLUME FLAW ANALYSIS

DATA:
NC — 132 HOT PRESSED Si3N,4
m 1.65

o 74.82 MPa METER (0-3922)
r}@ 6 Ier 7.65
N 16.30 | ———
1 (ogr) 163 72.82 WPa PER CUBIC METER
SHEAR-INSENSITIVE CALCULATION OF N

h 6.35 mm (.25 in.)
I 41.275 mm (1.625 in.)
t 3.80 mm (.15 in.)
RPM 70 000 TO 114 000
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DESIGN APPLICATION

SCARE has been used for the preliminary design of a silicon nitride mixed-flow
rotor for application in small, high temperature engines. A single blade and
a section of the rotor hub were analyzed using the cyclic symmetry option of
MSC/NASTRAN. The results from the heat transfer and reliability analyses are
shown below. Again, the shear-sensitive criterion yields a higher probability
of failure for the same applied load. However, the regions of low reliability
are the same for both models.

SILICON NITRIDE MIXED-FLOW ROTOR
TEMPERATURE DISTRIBUTION

TEMPEQ&TURE
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COMPARISON OF RISK OF RUPTURE INTENSITIES
PER UNIT VOLUME
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PRINCIPLE OF INDEPENDENT STRAIN ENERGY RELEASE RATE
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CURRENT USAGE OF SCARE

SCARE is a unique public-domain program which has been requested by numerous
companies in various industries.

INITIAL VERSION OF SCARE RELEASED TO
(FEBRUARY 1, 1988)

GENERAL MOTORS CORPORATION BOEING AEROSPACE COMPANY
DETROIT DIESEL ALLISON GENERAL ELECTRIC COMPANY

FORD MOTOR COMPANY BABCOCK AND WILCOX

CHRYSLER CORPORATION AVCO LYCOMING DIVISION

TRW VALVE DIVISION DOW CHEMICAL

NORTON-TRW CORPORATION TRW SPACE & TECHNOLOGY GROUP
EATON CORPORATION GARRETT TURBINE ENGINE COMPANY
PDA ENGINEERING ALLISON GAS TURBINE DIVISION
NASA/COSMIC SOFTWARE CENTER OAK RIDGE NATIONAL LABORATORY
SPARTA SUNSTRAND-TURBOMACH CORPORATION
WLT CORPORATION STRUCTURAL INTEGRITY ASSOCIATES

INDUSTRIES INVOLVED—AUTOMOBILE, AEROSPACE, NUCLEAR, & COMPUTER SOFTWARE
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SUMMARY

A statistical design methodology must be used with ceramics to account for not
only the average strength but, also, the scatter in strength. However, statis-
tics must be supplemented with LEFM to provide a mechanistic understanding of
the pertinent phenomenon. The improvement in failure predictions when using a
shear-sensitive fracture mechanics based failure criterion was shown in the
rotating disk example. The fracture mechanics/statistics combination allows
for sound predictions when considering multiaxial stress states or concurrent
flaw populations. This has been accomplished in the public domain finite
element post-processor SCARE. This framework will be built on as we begin
research on ceramic fatigue due to slow crack growth.

* PROBABILISTIC DESIGN APPROACH MUST BE USED FOR CERAMICS

* FRACTURE MECHANICS IS NEEDED TO ACCURATELY ACCOUNT FOR:
- MULTIAXIAL EFFECTS
~ CONCURRENT VOLUME AND SURFACE FLAW POPULATIONS
- SLOW CRACK GROWTH

» SHEAR-SENSITIVE FRACTURE CRITERIA GIVE BETTER RESULTS
» FAST FRACTURE PREDICTION CAPABILITIES ARE READILY ACCESSIBLE

CD-88-32577
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WH I SKER-RE INFORCED CERAMIC COMPOSITES FOR
HEAT ENGINE COMPONENTS*

Stephen F. Duffy
Cleveland State University
Cleveland, Ohio

ABSTRACT

Much work has been undertaken to develop techniques of incorporating SiC whisk-
ers into either a Si3N, or SiC matrix. The result has been the fabrication of
ceramic composites with ever-increasing fracture toughness and strength. To
complement this research effort, the fracture behavior of whisker-reinforced
ceramics is studied so as to develop methodologies for the analysis of struc-
tural components fabricated from this toughened material. The results, out-
lined herein, focus on the following areas: the use of micromechanics to
predict thermoelastic properties, theoretical aspects of fracture behavior,

and reliability analysis.

*Work performed on-site at NASA Lewis for the Structural Integrity Branch
under grant NCC3-81.
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SCOPE

Current research activities are being focused on upgrading the performance of
heat engines by increasing operating temperatures. With this goal in mind,
whisker reinforced ceramics with improved strength and fracture toughness are
being investigated for use as structural components in engine hot sectioms.
Even though the fracture toughness of these composites is improved relative to
unreinforced ceramics, they remain brittle in nature. Work has been initiated
to identify and develop probabilistic methods required in the analysis of
whisker-reinforced ceramic components. In addition, approaches using micro-
mechanics to predict thermoelastic properties are under review.

 OBJECTIVES

e TOUGHENING MECHANISMS

* CRACK GROWTH MITIGATION PROCESSES IN WHISKER-REINFORCED CERAMICS
. lMPROVEMfNTS IN STRENGTH AND TOUGHNESS

¢ MICROMECHANICS AND WHISKER ORIENTATION

e ELASTIC MATERIAL PROPERTIES
e WEIBULL DATA

o RELIABILITY ANALYSIS
e SUMMARY
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OBJECTIVE

The objective of this effort includes the jdentification of whisker reinforced
ceramics for use in engine hot sections. Further, the technical thrust is
directed towards developing and/or refining analytical methods and computer
codes that adequately predict fast fracture and life. The effort complements
concurrent research by other organizational groups within NASA, the federal

government, academia, and industry.

« IDENTIFY WHISKER REINFORCED CERAMICS FOR USE IN
ENGINE HOT SECTIONS

o DEVELOP AND REFINE ANALYTICAL METHODS AND
COMPUTER CODES FOR PREDICTING

— FAST FRACTURE
— LIFE
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TYPICAL TOUGHENING MECHANISMS FOR CERAMICS

Historically, three approaches have been taken to improve fracture toughness.
One approach is to engineer the grain size and shape to provide a tortuous
microstructure such that the path of the crack tip is deflected from the opti-
mum orientation for crack growth. The second approach creates microstructures
containing second-phase particles resulting in transformation toughening.
Here, a zone surrounding the crack tip absorbs energy and shields the tip by
reducing the near field stress. The third approach, including whiskers in the
matrix, increases toughness by pinning, deflecting, and/or bridging the crack
tip.

» ENGINEERING GRAIN SIZE AND SHAPE  CREATING MICROSTRUCTURES WITH
7 SECOND-PHASE PARTICLES
' CRYSTAL SHAPE OR METASTABLE
GRAIN BOUNDARY REGIONS
PHASE DEFLECTS ABSORB ENERGY,
; CRACK AND/OR CLOSING CRACK
_ ABSORBS ENERGY
- MICROSTRUCTURE CREATES A LADVANCING CRACK TIP TRANSFORMS
TORTUOUS PATH OF LEAST REGIONS AS IT PASSES

RESISTANCE FOR ADVANCING CRACK

* ADDING HIGH-STRENGTH WHISKERS

oo

N/ \ l/ \/ WHISKERS ABSORB
\ ENERGY IN DEFLECTION
/7 / AND/OR PULLOUT

| %

A KRS
A
- ADVANCING CRACK TIP BRANCHES,

WHISKERS BREAK, TRAILING WHISKERS
RESIST OPENING
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CRACK GROWTH MITIGATION PROCESSES - WHISKER REINFORCED CERAMICS
It has been demonstrated experimentally that dispersing whiskers in a brittle
matrix will mitigate crack growth. The presence of whiskers at the crack tip
modifies fracture behavior by effectively increasing the required crack driv-
ing force through several mechanisms. As noted previously, these mechanisms
include crack deflection, crack pinning, and whisker bridging. Faber and Evans

(1983) have studied crack deflection and provide a lucid discussion. Lange
(1971) discussed the process of crack pinning, and Wetherhold (1987) provides

a probabilistic treatment of the crack bridging phenomenon. _ |

THREE PROCESSES INCREASE FRACTURE TOUGHNESS
o CRACK DEFLECTION
- TILTING
— TWISTING

» CRACK PINNING
o WHISKER BRIDGING

SEVERAL PROCESSES MAY OPERATE SIMULTANEOUSLY
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IMPROVEMENTS IN STRENGTH AND TOUGHNESS

The addition of SiC whiskers in a Si3N4 matrix offers potential for considera-
ble improvement in fracture toughness and strength. Note that the raw mate-
rials necessary for fabricating these composites are nonstrategic and are
inherently lightweight. Initial attempts to develop whisker composites with
these materials met with varying degrees of success (e.g., increased fracture
toughness and decreased strength). Recently, Buljan et al. (1987) at GTE Labo-
ratories, Inc., reported improvements in both toughness and strength over the
entire range of whisker contents tested.

HOT PRESSED Si3N4—SiC WHISKER COMPOSITES

-— 900 - 900

8— —1800 8 — 800

7= _ 7 MODULUS
700 700 OF

RUPTURE
600 MPpaem V2

FRACTURE

TOUGHNESS,
Kic, 6‘;,4/ —|600 6

MPaem 2
5‘?7 —{s00 5 500
4 I S P PP 4 — 400
0 1 20 30 0 10 20 30
SiC CONTENT, (vol %)
1000 °C 1200 °C
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ANALYTICAL APPROACH

The analytical approach taken involves the development of an integrated com-
puter algorithm. The algorithm consists of (1) a micromechanics preprocessor,
(2) a fintie element code capable of incorporating material anisotropy, and
(3) a statistical failure postprocessor. Proposed use of MSC/Nastran as the
finite element code is based on its anisotropic analysis capability and wide-
spread user base. The preprocessors and postprocessors are currently under
development.

DEVELOP PREPROCESSOR FOR
| MICROMECHANICS PREDICTION OF ELASTIC
THERMOMECHANICAL PROPERTIES

T |

USE EXISTING FINITE-ELEMENT

STRESS
CODES FOR ANISOTROPIC
ANALYSIS ELASTIC ANALYSIS
) J
STATISTICAL DEVELOP AND REFINE FAILURE
FAILURE CRITERIA AND INCORPORATE
ANALYSIS INTO A POSTPROCESSOR

CD-88-32517
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MICROMECHANICS AND WHISKER ORIENTATION

The thermoelastic properties of ceramic whisker composites are determined by
process~induced whisker orientation and the constituent properties. Possible
material symmetries resulting from fabrication include isotropy, transverse
isotropy, and orthotropy. To characterize the internal structure, a whisker
orientation distribution function is adopted. This approach was suggested by
Pipes et al. (1982). The function quantifies all states of orientation, from
random to perfectly aligned.

MATERIAL SYMMETRIES

* ISOTROPIC
o TRANSVERSELY {SOTROPIC
* ORTHOTROPIC

DEFINE WHISKER ORIENTATION PROBABILITY FUNCTION n(¢) SUBJECT TO
Xﬂ
. n(e) de=1

WHEN

n(¢) = CONSTANT RANDOM WHISKER ORIENTATION
n(¢) =é(n—9) ALIGNED WHISKER ORIENTATION

HERE 6 IS THE DIRAC DELTA FUNCTION AND 7 IS THE PRINCIPAL
MATERIAL DIRECTION
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MICROMECHANICS THEORY

The micromechanics theory proposed by Wu and McCullough (1977) for short fiber
polymer composites is being considered for adaptation to whisker-reinforced
ceramics. The theory was developed using variational techniques and incorpo-
rates the degree of whisker orientation, constituent properties, and volume
fractions. The method requires the properties of a reference orientation,
usually taken as the random orientation state. The parameters f and g
define the orientation distribution and are included in the calculation of
volume averaged properties.

EXPRESSING THE EFFECTIVE ELASTIC MATERIAL CONSTANTS AS
€ = Cia + FCiir Ciad 1+ 6Cijg, Cijid) 9
WHERE

Cija PREDICTED ELASTIC CONSTANTS OF THE COMPOSITE

C,-l?k, ELASTIC CONSTANTS FOR RANDOM WHISKER ORIENTATION

Cijia LINEAR COMBINATION OF THE CONSTITUENT ELASTIC CONSTANTS

THE PARAMETERS f AND g ARE FUNCTIONALLY DEPENDENT UPON n(s) AND DESCRIBE
THE ORIENTATION STATE. WHEN
f=g=0 RANDOM WHISKER ORIENTATION

f=g=1 ALIGNED WHISKER ORIENTATION
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PLANAR WHISKER ORIENTATION

The planar orientation of whiskers is often encountered in hot pressed compos-~
ites. This spec1a1 case was considered by Pipes et al. (1982). The orienta-
tion descriptors and g along with the distribution function are defined
below. Bozarth, et a1 (1989) developed a Monte Carlo simulation that depicts
the whisker orientation for specified values fp.

APPLYING THE CONCEPT TO A PLANAR ORIENTATION OF WHISKERS
n(¢) =K cos (A¢)

lp = 2(cos? o)—1
20,7 - 21y)
gp =_fr _ ¥
5(4 — 2f))
WHERE
o2 wl 2 ?
(cos ¢/ = J —:rIZ n(¢) cos ¢ d¢
THEN

fp=01 TRANSVERSE ISOTROPY

0<f,<1 ORTHOTROPY
A MONTE CARLO SIMULATION ILLUSTRATES GRAPHICALLY VARIOUS f, VALUES

\ #\uu
k0% * ‘;;ﬁ,’} /\’;j\"

\'&’“> » W Faeia
fp—ﬂ.3 —06 fp=0.9
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INFLUENCE OF WHISKER ORIENTATION ON MATERIAL PROPERTIES

The influence of orientation on material properties is show below (from Pipes
et al., 1982). Both the elastic modulii and the coefficients of thermal expan-
sion are plotted for a short glass fiber phenolic resin matrix composite. The
constants are plotted over the full range of fp. Note that for f, =1 and
fp = 0, the material is transversely isotropic. For all other values, the ma-
terial is orthotropic.

| PREDICTIONS USING THE APPROACH FOR A SHORT FIBER POLYMER COMPOSITE
FIBER ASPECT RATIO =40-100; FIBER CONTENT BY WEIGHT = 58%

%p 4— e
0 = "
EXPANSION 2 Youne's 3
COEFFICIENT, o ~ MODLI:JLUS,
=1  W— _—~- 1 .
~_~- Q’L 1 B
I T I 1 ™
0 2 4 6 8 10 0 2 4 6 8 10

ORIENTATION PARAMETER, /,
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The examples shown below of stress
whisker contents were reported by

ELASTIC MATERIAL PROPERTIES

-strain curves corresponding to various
Shalek et al. (1986). Note that the curves

exhibit a linear stress-strain response up to the point of fracture. This
indicates that crack growth involves only brittle fracture and allows for the
application of linear elastic fracture mechanics (LEFM).

SiC WISKER-HOT-PRESSED Si3Ny
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WEIBULL MODULUS

Greatly improved reliability has been cited by a number of authors, including
Claussen and Petzow (1985), who have reported the highest Weibull modulus (m =
24) in the open literature. Improved processing techniques have resulted in
the reduction of inhomogeneities, uniform whisker distribution, and a dense
matrix. . However, the variability of strength is still too high for the appli-
cation of deterministic fracture theories.

30% SiC-WHISKER-Si3N4-MATRIX COMPOSITE

WHISKER REINFORCED CERAMICS EXHIBIT A VARIABILITY IN STRENGTH; HENCE,
PROBABILISTIC METHODS OF ANALYSIS MUST BE APPLIED

999 —
99—

=
P &- é 5
| O/' O—? PROBABILITY

FAILURE I

A
m=24

05—

ol 1 1 |

400 600 1000
FRACTURE STRENGTH,
MPa
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TRANSVERSE ISOTROPY

As noted previously, depending on fabrication, a whisker composite may have
isotropic, transversely isotopic, or orthotropic material symmetry. It is
anticipated that the probabilistic methods used in the analysis of monolithic
ceramics will be appropriate for isotropic whisker composites. However, for
transversely isotropic whisker composites, the probability of failure Pg¢

must also reflect the preferred direction of the material dj. This direction
is defined as the normal to the plane of isotropy. A simple but rigorous
method of including material symmetry in the functional dependence of Pg for
transverse isotropy is presented. A similar approach can be developed for
orthotropy.

TRANSVERSELY ISOTROPIC WHISKER COMPOSITES

\

T 0 \ / d; (UNIT VECTOR) Yz
& S

7T\

PLANE OF ISOTROPY ~ T *2

X3
1
] ‘ I
HOT PRESSED INJECTION MOLDED
DEPENDENCE OF P, MUST REFLECT ajj» 0;, VOLUME AS WELL AS THE WEIBULL
PARAMETERS

P,=P, (O'II, dld,, V, ....)

ASSUMING WEAKEST LINK THEORY IS APPROPRIATE, FORMULATE P; IN A WAY THAT
ACCOUNTS FOR THE ABOVE DEPENDENCE
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TENSORIAL INVARIANTS

As Py is a scalar function, it must remain form invariant under arbitrary
proper orthogonal transformations. Form invariance is ensured if dependence is
taken on invariants that constitute an integrity basis or any subset thereof.
Tensorial invariant theory (see Spencer (1971)) serves as the basic mathemati-
cal tool.in the development of the integrity basis. A subsequent geometric
argument is made in constructing a slightly different set of invariants that
corresponds to physical mechanisms related to fracture.

ADOPT THE FOLLOWING INTEGRITY BASIS:
ly = gjj l4=d; d; ojj
ly= ojj 9ji Is = d; %jj Ojk dy
I3 = ojj ojy o4

IDENTIFY DAMAGING STRESS TRACTION VECTORS:

X2 I3
N
Xq 1-1 D
X3
/ ‘
I3, Iy MAXIMUM AND MINIMUM i; NORMAL STRESS IN DIRECTION
NORMAL STRESSES IN OF d;

PLANE OF ISOTROPY
I, SHEAR STRESS ACTING ACROSS d;
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FAILURE PROBABILITY AS A FUNCTION OF INVARIANTS

The dependence of Py is subsequently taken on the invariants Ij, Iy, I3,
and I,. This new set of invariants corresponds to the magnitudes of the
stress traction vectors assumed to be the primary causes of fracture. These
invariants incorporate both the stress tensor o;j; and the direction vector
dj. Adopting the simplest of probabilistic failure theories, that is, a
noninteractive theory, results in the form of Pf shown in the figure.

FROM THE INTEGRITY BASIS CONSTRUCT INVARIANTS WITH PHYSICAL
INTERPRETATIONS CORRESPONDING TO THE MAGNITUDES OF THE DAMAGING
STRESS TRACTION VECTORS

=1y
= COMPONENT OF S;

PROJECTED ON
DIRECTION d,

Iy = (15— 149"
= COMPONENT OF §;

PROJECTED ON THE
PLANE OF ISOTROPY

I3 =Ya(l1~Ig) + [(%a)lo ~ I5 =Yl = Ig) - [Velp ~ I5

+ Vallg2 = 112 + (Ye)lq I} %2 + % - 1) + lylg) "

= MAXIMUM NORMAL STRESS IN si="i/'di = MAXIMUM NORMAL STRESS IN
PLANE OF ISOTROPY PLANE OF ISOTROPY
TAKING

P,=P’ (I—-l, I—2, ’-3, 1—4, V,...)

ENSURES P, IS FORM INVARIANT. ASSUMING THE INVARIANTS ACT SEPARATELY IN
PRODUCING FAILURE

et () ) ) G
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PLANE STRESS PROBABILISTIC ANALYSIS

The form of Pgf is simplified for plane stress conditions considering two
planar orientations of the whiskers. In both cases it is assumed that the
whiskers are confined to the 1-3 plane due to fabrication. A random orienta-
tion of whiskers in the 1-3 plane reduces Pf to the isotropic formulation.
Alternatively, perfect alignment of the whiskers in the 1-3 plane reduces Pg
to a formulation proposed by Sun and Yamada (1978), Wetherhold and Pipes
(1984), and Cassenti (1984).

d=0.10 /7 X X/" 7 4=
I 1-3 PLANE IS X, 2.3 PLANE IS
Xz THE PLANE OF THE PLANE
T ISOTROPY 1 OF ISOTROPY
D e
X3 ] X3

ASSUMING PLANE STRESS ASSUMING PLANE STRESS
012 =022 =023=0 013 =023=033=0

THEN THEN
| o\ o \* l 011\ 12 \ "2
=1- - — = dv Pp=1- - — —=
fr=t-en { L[(m) +<ﬂa>] o omom .\va) (&)
+ <_22>°] v
B3 J
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STRESSES IN THE PLANE OF ISOTROPY
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WHISKER BRIDGING

Attempts have been made to develop statistical models that account for the
microstructural events leading to crack propagation. Wetherhold (1987) de-
rived a model assuming that fracture behavior is dominated by whiskers bridg-
ing a critical damage zone. The damage zone is analogous to a microcrack which
is expected to grow and coalesce with other microcracks during progressive
fracture. A distribution function for composite strength is developed based

on the incorporation of random whisker strength into a bundle fracture theory.

THE FOLLOWING STATISTICAL APPROACH ACCOUNTS FOR THE
WHISKER BRIDGING MECHANISM

.-_,_' | ,~BRIDGING
| 7 WHISKER

|1y SPECIMEN OF
1 UNIT VOLUME

1 1
—>|  }«— DAMAGE ZONE
DEFINE

[A] = THE EVENT WHERE ULTIMATE COMPOSITE STRENGTH
IS GREATER THAN THE APPLIED LOAD

THEN
P, = PIA]
N
= Y PlAp=i]1Pn=i]
i=o0
WHERE

n NUMBER OF WHISKERS BRIDGING THE DAMAGE ZONE
N NUMBER OF FIBERS PER UNIT VOLUME

CD--88-32528
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SUMMARY

Enough experimental data exist that strongly suggests whisker-reinforced
ceramics have promise, especially in the automotive industry where low-cost,
high-volume fabrication is a necessity. The Structural Integrity Branch is
identifying and refining existing design methodologies and, where necessary,
assisting: the research community in developing new methodologies. At present,
there exists a need for analytical methods that capture the microstructural
events that lead to increased fracture toughness and strength. Finally, work
has begun on an integrated computer program capable of predicting elastic mate-
rial properties through the application of micromechanics, the state of stress
within a structural component, and the reliability of the component given the
state of stress.

o EXPERIMENTAL DATA SHOW SIGNIFICANT INCREASES OF STRENGTH AND FRACTURE
TOUGHNESS DUE TO THE ADDITION OF CERAMIC WHISKERS IN A CERAMIC MATRIX

o WHISKER COMPOSITES HAVE THE ATTRACTIVE FEATURE OF USING CONVENTIONAL
POWDER PROCESSING TECHNIQUES IN HIGH-VOLUME, LOW-COST FABRICATION

AN INTEGRATED STRUCTURAL ANALYSIS CODE IS BEING DEVELOPED WITH THE
FOLLOWING COMPONENTS:

— MICROMECHANICS PREPROCESSOR
— FINITE-ELEMENT PROGRAM
— STATISTICAL FAILURE ANALYSIS POSTPROCESSOR

 RESEARCH IS UNDERWAY TO DEVELOP AND REFINE STATISTICAL FAILURE THEORIES
TO ACCOUNT FOR MATERIAL ANISOTROPY ALONG WITH THE MICROSTRUCTURAL
EVENTS LEADING TO FAILURE (I.E., CRACK DEFLECTION AND WHISKER BRIDGING)

CD-88-32529
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CONTINUOUS FIBER CERAMIC MATRIX COMPOSITES
FOR HEAT ENGINE COMPONENTS*

David E. Tripp
Cleveland State University
NASA Lewis Research Center

ABSTRACT

High strength at elevated temperatures, low density, resistance to wear, and
abundance of nonstrategic raw materials make structural ceramics attractive
for advanced heat engine applications. Unfortunately, ceramics have a low
fracture toughness and fail catastrophically because of overload, impact, and
contact stresses. Ceramic matrix composites provide the means to achieve
improved fracture toughness while retaining desirable characteristics, such as

high strength and low density.

Unlike polymer matrix composites, where a strong fiber is added to a weak
matrix to provide increased strength and stiffness, ceramic matrix composites
add fibers to an already strong matrix to achieve improved toughness. The
toughening mechanisms in ceramic matrix composites are crack bridging, debond-
ing, fiber friction, and fiber pullout. The factors that increase toughness,
such as large fiber diameter and low interfacial bond strength, decrease com-
posite strength. Thus, ceramic matrix composites are very different from

polymer matrix composites.

Materials scientists and engineers are trying to develop the ideal fibers and
matrices to achieve the optimum ceramic matrix composite properties. A need,
however, also exists for the development of failure models for the design of
ceramic matrix composite heat engine components. Phenomenological failure
models such as maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu are cur-
rently the most frequently used in industry, but they are deterministic and do
not adequately describe ceramic matrix composite behavior. Semi-empirical
models have been proposed, such as Whitney and Nuismer (1974), which relate
the failure of notched composite laminates to the stress a characteristic dis-
tance away from the notch. Shear lag models such as that proposed by Eringen
and Kim (1974) describe composite failure modes at the micromechanics level.
The enhanced matrix cracking stress predicted by Aveston, Cooper, and Kelly
(1971) occurs at the same applied stress level as predicted by the two models
of steady state cracking by Budiansky, Hutchinson, and Evans (1986), and
Marshall, Cox, and Evans (1985). Finally, statistical models, such as

*Work performed on-site at the Lewis Research Center for the Structural
Integrity Branch under NASA grant NCC-3-81.
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Wetherhold and Pipes (1984), take into consideration the distribution in
composite failure strength.

The intent at the NASA Lewis Research Center is to develop these models into
computer algorithms for the failure analysis of ceramic matrix composites
under monotonically increasing loads. These algorithms will be included in a
postprocessor to general purpose finite element programs.
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SCOPE AND OBJECTIVES

Further developments in advanced heat engines are limited by the metallic
materials currently available. For future applications (such as the National
Aerospace Plane and automotive gas turbine engines) to become a reality, new
materials capable of surviving the required stresses and temperatures for

the life of the structure must become available. Not only, however, must
those advanced materials systems be identified, but the necessary tools to
design a structure with them must also be developed. The Structural Integrity
Branch at NASA Lewis Research Center is identifying those ceramic matrix com-
posite (CMC) systems currently being developed which are suitable for high-
temperature applications and the failure models available to describe their
behavior under monotonic loads. The results will be published in a survey
later this year. Those models will then be selectively incorporated into a
postprocessor for general purpose finite element programs, comparable to the
SCARE postprocessor. '

« IDENTIFY CERAMIC MATRIX COMPOSITE SYSTEMS SUITABLE FOR ADVANCED HEAT
ENGINE COMPONENTS

« IDENTIFY MODELS FOR THE FAST FRACTURE ANALYSIS OF CERAMIC MATRIX
COMPOSITE LAMINATES

« INCORPORATE THOSE MODELS INTO A POSTPROCESSOR FOR GENERAL PURPOSE
FINITE ELEMENT PROGRAMS SUCH AS MSC/NASTRAN

’ CD-86-33070
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ADVANTAGES OF CERAMIC MATRIX COMPOSITES

Strong ceramic fibers have been added to reinforce low strength, typically
glass-ceramic matrices, such as SiC/LAS, to achieve improved strength as in
polymer matrix composites. These composites will not satisfy the high-
temperature requirements of the applications we are interested in, but they
may have other applications. The ceramic matrices attractive for advanced

heat engine applications, such as SiC and Si3N,, already have adequate strength
at elevated temperatures. Unfortunately, monolithic ceramics also have a low
fracture toughness and fail catastrophically because of overload, impact, and
contact stresses. Continuing improvements are being made in monolithic cer-
amics, and further reduction in critical flaw size could result in stronger
ceramics. But in the past this has only resulted in increased strength without
any appreciable increase in fracture toughness, and at a steadily increasing
cost. Whisker reinforced composites provide improved fracture toughness and
increased tolerance to flaws but still fail in a brittle manner. Continuous-
fiber reinforced composites also have improved fracture toughness and increased
tolerance to flaws but, in contrast to whisker reinforced composites, fail
gracefully and are the answer to improved reliability.

* THERE ARE LIMITED FUTURE IMPROVEMENTS IN MONOLITHIC PROCESSING AND
POWDERS. ECONOMIC CONSTRAINTS HAVE BEEN REACHED ON IMPURITIES, DENSITIES,
AND FLAW SIZES

* MONOLITHIC TOUGHNESS REMAINS VERY LOW. MONOLITHIC CERAMICS ARE
INTRINSICALLY FLAW INTOLERANT AND FAIL CATASTROPHICALLY BECAUSE OF
OVERLOAD, IMPACT, AND CONTACT STRESSES

* WHISKER REINFORCED COMPOSITES PROVIDE IMPROVED TOUGHNESS AND INCREASED
FLAW TOLERANCE BUT REMAIN BRITTLE

* CONTINUOUS FIBER REINFORCED COMPOSITES PROVIDE INCREASED FLAW
TOLERANCE, IMPROVED TOUGHNESS, AND GRACEFUL FAILURE—ANSWER TO
IMPROVED RELIABILITY

CD-88-33071



GRACEFUL FAILURE OF SiC/SiC

A typical stress-strain curve (Caputo et al., 1985) for a SiC/SiC composite

at room temperature demonstrates graceful failure. This specimen contained

58 vol % SiC fibers. The maximum flexural strength of 330 MPa was achieved at
a strain of 1.05 percent in a four-point flexure test. More significant, how-
ever, was the achievement of graceful failure. Unlike the monolithic SiC,
which failed catastrophically at a very low strain, the unidirectional SiC/SsiC
composite is strain tolerant and sustained load after matrix crack initiation.
At a strain of 2.8 percent, the specimen maintained a stress of 188 MPa -

57 percent of its maximum strength. This gradual loss of strength as strain
increases, in contrast to the catastrophic failure of monolithic ceramics,
makes the use of advanced ceramic matrix composites attractive in heat engine
applications where catastrophic failure is unacceptable.

I 400 —
50 x 103
— MONOLITHIC
SiC
300
40 —
__ STRESS,
STRESS N MPa 200
59, UNIDIRECTIONAL SiC/SiC
Pt o9 — COMPOSITE
100 H-
10 —
o V 1 1 | 1 | |
0 5 1.0 15 2.0 2.5 3.0

STRAIN, PERCENT
*ADAPTED FROM CAPUTO ET AL. (1984)
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TOUGHENING MECHANISMS IN CERAMIC MATRIX COMPOSITES

The toughening mechanisms (Harris, 1986) in ceramic matrix composites are
described by considering an isolated fiber. A crack initiates in the matrix
(fig. (b)) and starts to propagate normal to the load. The higher stiffness
and strength of the fiber inhibits further extension of the crack when it
reaches the fiber. As the load is increased (fig. (c)), local stress concen-
trations and Poisson contractions cause the fiber to debond from the matrix,
provided the interfacial bond strength is weak enough. Outwater and Murphy
(1970) gave an upper limit to the energy of debonding Wyp. After debonding,
the crack will open further as the load is increased. The term Wf, is an
estimate of the work against frictional resistance as the fiber moves relative
to the matrix. Upon further loading of the composite (fig. (e)), the fiber
will break at some weak point. As the broken fibers are pulled out against
the frictional resistance, they contribute to the work of pullout Wp.
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*ADAPTED FROM HARRIS (1986)
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TOUGHNESS VERSUS STRENGTH

Aveston et al. (1971) showed that first matrix cracking for a brittle matrix
composite will occur not at the nominal failure strain of the matrix but at an
enhanced matrix cracking strain. According to their analysis, the strength of
a brittle matrix composite is enhanced by a small fiber radius, a strong fiber-
matrix interfacial shear strength, and a high matrix fracture surface energy.
Conversely, fiber pullout increases fracture toughness. Cottrell (1964) and
Kelly (1970) show that the pullout work of fracture is increased by a weak
interfacial frictional shear stress, a large fiber diameter, and a large fiber
failure strain. Toughness is gained at the expense of strength since large
fiber diameter contributes to increased toughness but results in decreased
strength. A similar relation holds for interfacial properties. Thus, optimal
fiber diameters and interfacial properties exist for the desired combination
of strength and toughness.

« AVESTON, COOPER, AND KELLY (1971)—THEORY FOR ENHANCED MATRIX CRACKING

127y EVi2\ 1P

€ =
™\ EcEnriVim

o COTTRELL (1964) AND KELLY (1970)—PULLOUT WORK OF FRACTURE

2
_ for (Vi ons
7fp 4 121"

o CONCLUSION: FACTORS INCREASING TOUGHNESS MAY DECREASE STRENGTH

CD-88-33074
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DESIRED FEATURES FOR ADVANCED CERAMIC MATRIX COMPOSITES

Ceramic matrix composites fracture by the low-strain propagation of cracks in
the brittle matrix (DiCarlo, 1985). High composite fracture strain is achieved
by a high volume fraction of fibers bridging the matrix cracks. The bridging
fibers reduce crack openings under loading, requiring greater applied strains
for matrix crack propagation than those needed in the unreinforced matrix. If
the fiber-matrix interfacial bond is strong, the stress concentration on fibers
at the crack tip generally will be high enough to fracture the fiber, result-
ing in a brittle composite fracture. However, if the interfacial bond is weak
and the strength of the fibers is high enough to support the applied load, the
matrix cracks will propagate around the fibers and not through them. The com-
posite will not fracture catastrophically but will have a series of evenly
spaced matrix cracks bridged by reinforcing fibers. Thus, ceramic matrix com-
posites should contain a high volume fraction of fibers that are continuous,
are stiffer than the matrix, and possess a small diameter. The high volume
fraction and small diameter ensure that a sufficient number of fibers bridge
the matrix crack to prevent crack propagation until higher strain levels are
reached. The matrix and fibers should also be oxidation resistant to retain
their strength at high temperatures. Compatible fiber and matrix thermal
expansion coefficients prevent the formation of residual stresses that enhance
matrix cracking.

o FIBER SPACING SMALLER THAN CONTROLLING FLAWS IN MATRIX—TYPICALLY LESS
THAN 100 zm

* FIBER DIAMETER MUCH SMALLER THAN MATRIX FLAW—TYPICALLY LESS THAN 20 xm

* FIBER YOUNG’S MODULUS GREATER THAN MATRIX YOUNG’S MODULUS FOR GREATER
COMPOSITE STRENGTH

* OPTIMUM INTERFACIAL BONDING FOR TOUGHNESS AND STRENGTH

* DENSE, HIGH STRENGTH, HIGH TOUGHNESS, OXIDATION RESISTANT, REFRACTORY
MATRIX

» COMPATIBLE FIBER AND MATRIX THERMAL EXPANSION COEFFICIENTS

CD-88-33075
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MATRICES OF CURRENT INTEREST

A requirement of any composite system is compatibility of the matrix and fiber
with each other and the environment. Fiber and matrix compatibility must
result in optimal interfacial properties, but degradation by reaction or inter-
diffusion must be avoided. To achieve a compromise, it may be necessary to
coat the fibers to restrict interaction. Matrix materials include sintered
powders, organometallic precursors, and materials deposited from the vapor
phase (Phillips, 1983). The use of glass-ceramic matrices presents several
advantages. The hot-pressing of viscous glass minimizes fiber damage which

may occur with crystalline ceramics. The main disadvantage of glass-ceramics
is that their temperature is limited compared to other ceramics. Silicon car-
bide and silicon nitride are regarded as the high-temperature materials of
choice for most applications, but alumina and other oxides are also highly
refractory. Fabrication from powders has the advantage of using materials
which are inexpensive and available, but the formation of matrix agglomerates,
inadequate infiltration of the reinforcement, and damage to the fibers by abra-
sion is a problem. Organometallic precursors can be used for oxide and non-
oxide matrices and fiber coatings. A major advantage of this method is that
damage to the fibers is less likely since the precursors used are in a fluid
state, but densification is difficult to achieve.

TENSILE | TENSILE |DENSITY,
MODULUS, | STRENGTH, | g/cm3
GPa MPa
BOROSILICATE 60 100 2.3
GLASS

LAS 100 100-150 2.0
SigNg 310 410 3.2
Al,03 360-400 | 250-300 | 3.9-4.0
SiC 400-440 310 3.2

CD-88-33076
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FIBERS OF CURRENT INTEREST

Extensive research is being done in developing high-strength, oxidation resis-
tant, thermally stable small-diameter fibers. As mentioned, fiber-matrix com-
patibility is critical in composite behavior. A weak fiber-matrix interface
causes noncatastrophic failure; whereas a strong interface causes catastrophic
failure. The fiber Nicalon, derived from a polymer precursor, is a [3-SiC
fiber containing excess carbon that forms a weak carbon-rich interface with
many matrices (Mah et al., 1987). Nicalon, however, has limited thermal sta-
bility and loses significant strength above 1000 °C. The fiber-matrix strength
increases, possibly because of oxidation of the fibers, resulting in cata-
strophic failure of the composite. The AVCO monofilament fiber is produced by
chemical vapor deposition of SiC onto a carbon fiber core. A carbon-rich layer
is then applied to the fiber, which provides weak interfacial bonding and pro-
motes debonding and fiber pullout. AVCO fibers also experience significant
strength degradation. The AVCO fiber is a large diameter fiber. The oxide
fibers, Nextel 312 and FP, chemically bond to many matrices causing the compos-
ites to fail catastrophically. Fiber coatings, however, may provide optimal
interfacial characteristics. None of these fibers are thermally stable above
1200 °C, and work continues on developing new fibers. The Tyranno fiber is
produced from a polymer and is similar to Nicalon except for the addition of
Ti, which is said to retard grain growth and is expected to preserve high-
temperature strength. Nextel 440 and 480 are similar to Nextel 312, except

for the reduction in B903, which is also expected to improve high-temperature
properties.

DESIGNATION COMPOSITION, TENSILE | MODULUS, | DENSITY, | DIAMETER,

wt % STRENGTH, GPa g/cm um
MPa

NICALON 59 §i,31C, 100 2520-3290 | 182-210 2.55 10-20

SCS-6 SiC ON CARBON CORE 3920 406 3.0 143

NEXTEL 312 |62 Al;03, 14 B0, Si0; 1750 154 2.1 1

FP >99 o-Alx0; > 1400 385 3.9 20

TYRANNO Si, Ti,C, 0 >2970 >200 2.3-2.5 8-10

NEXTEL 440 |70 Al03, 28 Si0z, 2 B,0; 2100 189 3.05 10-12

NEXTEL 480 |70 Al;03, 28 Si0p, 2 Bo03 2275 224 3.05 10-12

CD-88--33077
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PHENOMENOLOGICAL FAILURE MODELS

There are five characteristic values of strength for a unidirectional compos-
ite: (1) longitudinal tensile strength, (2) longitudinal compressive strength,
(3) transverse tensile strength, (4) transverse compressive strength, and (5)
in-plane shear. The maximum stress theory states that failure will occur in a
lamina if any of the stresses in the principal material axes exceeds the corre-
sponding allowable stress as determined from simple unidirectional stress tests
(Nahas, 1986). Failure will occur in the maximum strain theory if any of the
strains in the principal axes exceeds the corresponding allowable strain. The
maximum strain theory is similar to the maximum stress theory and allowable
strains can be directly related to the allowable strengths. Predictions of

the two theories are quite close to each other. The differences are due to

the Poisson ratio. The Tsai-Hill criteria (Azzi and Tsai, 1985) provides a
single function to predict failure and takes into consideration the interac-
tion between strengths. The Tsai-Hill criterion remains applicable for materi-
als with properties different in tension and compression. Tsai and Wu (1971)
have proposed a tensor polynomial failure criteria. Wu (1974) has shown the
previous criteria are limit cases of this theory. A failure surface in stress
space exists where F; and Fjj; are second- and fourth-order strength ten-
sors. The noninteraction F terms are related to the engineering strengths.
The interaction F terms are determined from biaxial tests and are con-
strained by the inequality FjjFjj - Fi-z > 0. According to Burk (1983),

the maximum stress, maximum strain, Tsal-Hill, and Tsai-Wu failure criteria

are the most widely used in industry. These failure criteria, however, are
deterministic and do not describe the failure mechanisms. They also do not
consider the scatter in ceramic composite strengths and are simply fail/no-fail
criteria.

e MAXIMUM STRESS
01= 01y 02 = 0 2= T2

e MAXIMUM STRAIN

TRANSVERSE

€ =€y €2 =€y Y12 = Y12u
1 C—"> SHEAR
« TSAI-HILL 74
LONGITUDINAL
1 2 1 1 1 1, 1 2

501~ —2+—2-—'2' 0’102+—'502 +—2‘T12=1

1y Oty %20 93 o2u Y12
o TSAI-WU

F(o) = Fioi + Fijoigj =1
*NAHAS (1986) ’
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SEMI-EMPIRICAL FAILURE MODELS

Two stress criteria for predicting the tensile strength of notched composite
laminates have been proposed by Whitney and Nuismer (1974). The poinf stress
criteria and the average stress criteria assume that fracture occurs when the
stress at some characteristic distance away from the discontinuity reaches the
unnotched strength. The Whitney-Nuismer failure criteria were motivated by
the hole size effect in which larger holes cause greater strength reduction
than do smaller holes (Awerbuch and Madhukar, 1985). Although the stress con-
centration factor is independent of hole size, the normal stress oy 1is con-
centrated near the hole boundary for a smaller hole. It has been suggested
that a larger area is subjected to high stress for a larger hole and, thus,
has a higher probability of encountering inherent flaws, resulting in a lower
strength. The point stress criteria assumes that failure occurs when the
stress o, at a distance b away from the discontinuity is. equal to the
strength of the unnotched laminate. The average stress criteria assumes that
failure occurs when the average stress oy over some distance a equals the
unnotched laminate strength. Interest in the models is based on the assump-
tion that the characteristic distance, b or a, is a material property of a
particular laminate design. Experimental evidence suggests this may be true
for epoxy systems. The applicability of these models to CMC is not known.
Similar models have been proposed by Waddoups et al. (1971), Poe and S$Sova
(1980), and Mar and Lin (1977).

e WHITNEY-NUISMER MODELS
AVERAGE STRESS CRITERION POINT STRESS CRITERION

IEEAEEN RRERE,
VT o < VT oy

et ’ | o
T T
g =% S:H ay(x,0)dx 0o = 0y (x,0) lx:r;+b

*AWERBUCH AND MADHUKAR (1985)
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SHEAR LAG FAILURE MODELS

Shear lag failure models examine failure modes at the micromechanics level of
ceramic matrix composites. Cox (1952) introduced shear lag models and
Hedgepeth (1961) applied them to filamentary structures. Hedgepeth's model
considered filaments separated by a constant distance. The displacement of the
nth filament is given by wup(x,t) and the force in the nth filament is given
by Pn(x,t). The fibers carry all the tensile load while the matrix carries
only shear. Equilibrium of an element of the nth filament results in the par-
tial differential difference equations shown. By applying the appropriate
boundary conditions, we can solve the equations for the stress concentrations
in the filamentary structure. Eringen and Kim (1974) generalized the model to
include transverse loads in the matrix. Neither of these models can accurately
describe ceramic matrix composites because they neglect the tensile load car-
rying capability of the matrix, but further generalizations may make these
models applicable. Once such models are available they may be used to consider
failure mechanisms, such as longitudinal yielding and matrix splitting, as

did Goree and Gross (1979). They generalized Hedgepeth's model to include
longitudinal yielding and matrix splitting and arrived at three partial differ-
ential difference equations to describe the stresses and displacements in a
unidirectional-fiber-reinforced composite.

* HEDGEPETH (1961)
FORCE IN nth FILAMENT T P,
U

n-sm?f l
5, G 32Uy uz X
o 2 Uper = 2p+ Upog)=m—

EA o) +h (Ups1=2Up+ Up_q)=m 2 I l‘Ll f

4 3 2 1 0 -1-2
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h

« ERINGEN AND KIM (1874)

E gGm {1 d2 1d _
T’"(un+1-zun+un-1)+7 [E;z(unn+2Un+un-1)+;d_y(\‘n¢1"’n-1) =0

d2v, 14d 1
—— - - - - -2+ Vp o =0
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o GOREE AND GROSS (1979)
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FRACTURE MECHANICS MODELS

The first matrix crack marks the beginning of permanent damage and permits
oxidation of the fibers through loss of protection by the matrix. As we have
seen, Aveston et al. (1971) have shown that first matrix cracking occurs in a
ceramic matrix composite at a higher strain than it does for the monolithic
ceramic. For a crack to form, the stress in the matrix must be equal to its
breaking stress. In addition, the energy condition shown by the inequality
below must be satisfied. The inequality consists of energy terms for various
failure mechanisms under tensile loads. The fracture surface work in forming
a matrix crack is vyg. The work in breaking the fiber-matrix bond, given by
Outwater and Murphy (1969), is vygp. Work as the matrix slides over the
fibers against a frictional force is Ug,. The decrease in the elastic strain
energy in the matrix as the matrix cracks is given by AUp,. Conversely, the
elastic strain energy in the fibers increases and is given by AUgf. Finally,
the work done by the applied stresses is AW. Substituting these terms into
the inequality and assuming a frictional bond between the fiber and matrix
yields the formula for the enhanced matrix cracking strain.

¢ AVESTON, COOPER, AND KELLY (1971)
A CRACK WILL FORM PROVIDED

EmV.
2vm Vm + yab + Ugr + AUy < AW + AU c=€%ﬂ
L]
E'Eme 3

WORK OF APPLIED STRESS AW = edutn (1+¢)

ElEme 3
REDUCTION IN MATRIX STRAIN ENERGY AlUp = e oy

EtEmV, [

INCREASE IN FIBER STRAIN ENERGY Aly= '2"‘ B edu e <1 + 5)

T

EfEmV
WORK OF FRICTION AUy = '6'“ D3 e (l+c)
T
20muV
WORK OF DEBONDING yap = Zmu¥mSi
To

FOR A PURELY FRICTIONAL FIBER-MATRIX BOND, Qy = 0

127 ymEVE\ 13
ENHANCED MATRIX CRACKING STRAIN €mu = (—";1"—!3

EcEm"Vm

CD-88-33082




FRACTURE MECHANICS MODELS CONTINUED

Aveston et al. (1971) looked at the energy states in a crack before and after
crack propagation. Budiansky et al. (1986) assumed that if a crack engulfs
more than a few fibers the applied stress necessary for propagation is constant
and steady state cracking occurs. The assumption of steady state cracking
implies that the stresses at the crack front remain unchanged during crack
growth and also that the upstream and downstream states, far ahead of and
behind the crack, do not change. Equation (1) governs matrix cracking for the
fiber slip and no-slip cases. A shear lag analysis is used to determine the
upstream and downstream stresses. The matrix cracking stress predicted is
essentially the same as that of predicted by Aveston et al. (1971) except for
the initial stress term of. Another model for steady state cracking was pro-
posed by Marshall et al. (1985). The analysis is of unbonded unidirectional
lamina in which the sliding of the matrix over fibers is resisted only by fric-
tional forces. The energy solution is derived from the earlier analysis by
Aveston et al. (1971) but is expressed in terms of incremental crack extension.
For an incremental crack extension work dU is done against frictional forces,
the strain energy in the matrix decreases by dUp, the strain energy in the
fibers increases by dUf, and the potential energy of the loading system
decreases by dUj. Again, the predicted first cracking stress agrees with the
results of Aveston et al. (1971).

» MARSHALL, COX, AND EVANS (1985)

. dU = 2ymVm dc + dUpy + dUt - dUm = dUp
« BUDIANSKY, HUTCHINSON, AND EVANS (1986) I: . ]
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STATISTICAL MODELS

The previous models have ignored the statistical aspects of failure. Average
strengths have been employed resulting in fail/no-fail decisions. The models
considered here are weakest-link models where the failure of an element of the
volume results in the failure of the volume. The principle of independent
action considers the stress components to act separately in producing failure.
The Weibull shape parameter is B, the Weibull scale parameter is a, and o
is the stress component in the principal material coordinate system. The
parameters o and # are obtained from uniaxial strength tests. In not
allowing the stresses to interact, the principle of independent action should
give nonconservative results. Wetherhold and Pipes (1984) allow for interac—
tion of stresses by incorporating the maximum distortional energy failure
function into the probability of failure function. The probability density
functions for the strenmgths X;, Xp, and X (the strengths in the principal
material directions) are substituted into the maximum distortional energy fail-
ure function. The reliability then is the probability that K is less than
one. The resulting integral is analytically intractable. A Monte Carlo simu-
lation is used to evaluate the reliability. Other models have been proposed by
Batdorf (1982) and Harlow and Phoenix (1978). Macroscopic models were used in
these failure criteria and the micromechanics of failure were not considered.
The linking of micromechanics models and macromechanics models could result in
better probabilistic models.

* PRINCIPLE OF INDEPENDENT ACTION
oo GG e
* WETHERHOLD AND PIPES (1984)
G- G G G
WHERE K < 1=NO FAILURE AND R=P[K < 1]

KN pMIXY £O01LXpX5)
R= So L So FyX1)FxgX2) P (Xa) X dX2 X3

WHERE Fx,, Fx,, Fx, = PROBABILITY DENSITY FUNCTIONS FOR X, X2, AND X3

AND
z -
i“) = ? h(1,xa) = \ ’ 1*05_ 0(1'xz’x3) = v g1 = 0102

2 - (o3/X3)? 12 - (02/%2)? - (03/Xa)?
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SUMMARY AND CONCLUSIONS

Monolithic ceramics have high strength at high temperatures but are very sensi-
tive to flaws. Whisker composites have increased flaw tolerance but still fail
in a brittle manner. Ceramic matrix composites have improved fracture tough-
ness and fail noncatastrophically. In ceramic matrix composites, fibers are
added to a matrix to improve fracture toughness; whereas in polymer matrix com-
posites, a strong fiber is added to a weak matrix to improve strength. Conse-
quently, designing with ceramic matrix composites is different from designing
with polymer matrix composites, and different design criteria are needed. The
four most commonly used failure criteria in industry - maximum stress, maximum
strain, Tsai-Hill, and Tsai-Wu - do not consider the scatter in ceramic matrix
composite strengths but describe phenomenologically the failure mechanisms.
Shear lag models describe failure mechanisms at a micromechanics level but are
currently not capable of describing ceramic matrix composites. Semi-empirical
models fit equations to existing data and are applicable only to tensile

loaded composites. Statistical models, such as Wetherhold, consider the scat-
ter in ceramic composite strength but do not model failure mechanisms and are
difficult to use. A survey of these failure models will be published later.
Future work will involve selectively incorporating portions of these models
into a postprocessor for reliability analysis.

o CERAMIC MATRIX COMPOSITES PROVIDE THE MEANS TO ACHIEVE IMPROVED
FRACTURE TOUGHNESS AND GRACEFUL FAILURE WHILE RETAINING OTHER DESIRABLE
PROPERTIES SUCH AS HIGH-TEMPERATURE STRENGTH AND LOW DENSITY.

« DESIRED FEATURES FOR ADVANCED CERAMIC MATRIX COMPOSITES ARE DIFFERENT
FROM THOSE FOR POLYMER MATRIX COMPOSITES.

« VARIOUS FAILURE MODELS FOR MONOTONICALLY LOADED CERAMIC MATRIX
COMPOSITES WERE REVIEWED.

o FUTURE WORK WILL INVOLVE SELECTIVELY INCORPORATING THESE MODELS INTO
A POSTPROCESSOR FOR RELIABILITY ANALYSIS.

CD-88-33086
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APPENDIX - SYMBOLS

area
characteristic material distance
characteristic material distance
diameter

Young's modulus

strength tensor

matrix shear modulu§

critical mode I matrix energy release ratio

debonding energy of fiber matrix interface

thickness of filament
distance between filaments
stress intensity factor
composite length

fiber load transfer length
mass

number of fibers bridging crack
force

reliability

radius

length of matrix split
thickness, time

energy

displacement of filament
volume fraction
displacement of matrix

work
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XyYs2

o4

T

axes

mean debond length
Weibull scale parameter
Weibull shape parameter
work of fracture

strain

Poisson's ratio

stress

infacial shear

Subscripts:

c
cr
db
£

fr

P
u
X,yYs2

1,2,3

composite
critical
debonding

fiber

frictional force
potential energy
matrix

nth filament

unnotched strength
pullout

ultimate strength
axes

principal material axes

Superscripts:

d

m

downstream
matrix
upstream

initial stress
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NONDESTRUCTIVE‘EVALUATION
SESSION OVERVIEW

Alex Vary
Structural Integrity Branch
Lewis Research Center

The usual emphasis in nondestructive evaluation (NDE) is on detection and char-
acterization of a variety of discrete, hidden flaws that can impair structural
integrity and reduce life (i.e, cracks in metals, delaminations in composites,
inclusions in ceramics, etc.). In failure prevention schemes, the specifica-
tion of flaw criticality and the prediction of safe life depend on the assump-
tion of a realistic set of extrinsic properties. Fracture analysis models
presuppose flaw development in materials with known moduli, ultimate strengths,
fracture toughness, and fatigue and creep properties.

Emerging NDE techniques may be used to verify the mechanical properties men-
tioned above and to assess their degradation in service. Ultimately, these
techniques may be adapted for application to a variety of materials and actual
structural parts and help circumvent sole reliance on handbook or representa-
tive values based on previous screening or sampling tests. A holistic approach
to reliability assurance would combine the nondestructive characterization of
flaws with the characterization of the material environments in which the
flaws reside (Ruud and Green, 1983; Buck and Wolf, 1981; Vary 1984). This ap-
proach would engender more realistic assessments of structural integrity and
service degradation by providing a better information base for fracture analy-
sis and life prediction. Development and adaptation of the types of tech-
niques discussed are needed to assure structural reliability and safe service
life of components made of advanced materials in systems that demand efficient
performance under extreme operating conditions.

The need for nondestructive materials characterization is indicated where local
properties are critical or where the presence, identity, and distribution of
potentially critical flaws can only by assessed statistically. In the latter
case, flaws can be so microscopic, numerous, and dispersed that is impractical
to resolve them individually. Large populations of nonresolvable flaws may
interact with each other (e.g., surface with volume flaws) or with morphologi~-
cal anomalies. These interactions would be manifested as degraded bulk proper-—
ties (e.g., deficiencies in strength, and toughness). While a structure may

be free of discrete critical flaws, it may still be susceptible to failure
because of inadequate or degraded intrinsic mechanical properties. This can
arise from faulty material processing and/or aggressive service environments.
For these reasons it is important to have nondestructive methods for quantita-
tively characterizing mechanical properties.

Ultimately, mechanical properties are controlled by composition, microstruc-
ture, and morphology. These factors also influence various NDE probe media
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(ultrasonic waves, electric currents, magnetic fields, x rays). Modulations
of probe media by materials give quantitative measurements that correlate to
differing degrees with strength, hardness, toughness, and other properties
(see examples in the following table, which is based on Vary and Klima, 1986).

The approach at Lewis Research Center is to develop what we term "analytical
NDE" for characterizing materials factors that govern mechanical properties.
Analytical NDE refers to an emerging body of technology dedicated to assessing
flaw, damage, and degradation states in structural materials (Vary, 1987).
This requires advances in signal transmission, acquisition, and analysis.
Although analytical NDE is currently in its infancy, it is being employed in
materials research. At Lewis the emphasis is on the use of analytical ultra-
sonic NDE for advanced materials such as metal and ceramic matrix composites,
particulate- and whisker-toughened ceramics, and carbon-carbon composites.

The objective is to generate know-how for use in flaw detection; in integrity,
degradation, and damage assessmentj; and in fracture analysis on structures and
components.
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Quantitative nondestructive evaluation techniques for indirect characterization of material strength

Principal
techniques

Operational techniques

Directly measured quantities

Indirectly measured quantities

Dynamic excitation

Ultrasonic, acoustic

Electromagnetic

Penetrating and
particle radiation

Photooptical

Sonic vibration, eddy sonic
Forced flexure, torsion

Continuous wave, transmission,
resonance

Broadband pulse-echo,
spectrum analysis

Mechanical scan imaging
Acoustic microscopy
Acoustic emission

Eddy current

Magnetic field

X, gamma, neutron radiography
and radiation gauging

X-ray diffraction
Mossbauer method

Positron annihilation

Exoelectron emission

Neutron activation
Induced strain laser holography

Natural frequencies, forced
frequencies

Amplitude, energy dissipation

Phase/group velocities, dispersion,
damping, resonance frequencies

Rayleigh/phase/diffuse scatter,
attenuation coefficients

Signal intensity, diffraction
effects

Spatial frequency image,
interference fringes

Emission rate, amplitude
distribution, spectrum

Electrical conductivity, magnetic
permeability

Coersive force, flux leakage/
signature

Absorption and scatter radiation/
attenuation, backscatter

Scatter goniometry
Gamma-Doppler velocity

Annihilation event count

Emission current, photo-
emission image

Gamma spectrum analysis

Interference fringe spatial
frequency

Dynamic moduli, elastic constants,
density, composite morphology.
bond strength

Damping capacity, density,
texture, hardness, alloying
effects, cold work

Elastic constants, moduli,
anelasticity, microstructure,
grain/phase morphology,
residual stress state/distribution

Hardness, tensile/shear/yield
strengths, fracture toughness,
microstructure, texture, grain/
phase size/morphology

Macro- and microstructural
variations/anomalies, bond/
weld integrity/strength

Elastic/anelastic microstructural
variations, grain texture,
porosity, stress

In situ metallurgical
transformation, creep, fatigue
damage, microcracking

Polycrystalline grain/domain
anisotropies, alloy composition.
hardness, porosity

Ferroalloying content/
distribution, age/case
hardening, stress fields

Macro- and microstructural
variations/anomalies, density,
porosity, grain texture,
chemistry, moisture ingress,
corrosive/chemical attack

Residual stress state. lattice
spacing

Subsurface gradients. corrosion
products

Fatigue microcracking, plastic
deformation, grain-boundary
voids, strain hardening

Fatigue damage, plastic strain/
deformation

Alloy/chemical content, impurities

Stress/strain condition,
deformation, macro- and
microstructural anomalies
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ANALYTICAL NONDESTRUCTIVE EVALUATION (A-NDE)

* ANALYTICAL NDE REFERS TO AN EMERGING BODY OF TECHNOLOGY DEDICATED TO
ASSESSING FLAW, DAMAGE, AND DEGRADATION STATES IN STRUCTURAL MATERIALS

¢ THIS REQUIRES ADVANCEMENTS IN SIGNAL TRANSMISSION, ACQUISITION, AND
ANALYSIS FOR NONDESTRUCTIVE INTERROGATION AND INTERPRETATION

¢ ANALYTICAL NDE IS BEING USED IN ADVANCED MATERIALS RESEARCH (WITH MAJOR
EFFORTS IN ULTRASONIC AND RADIOGRAPHIC NDE)

* THE OBJECTIVE IS TO GENERATE NDE KNOW HOW FOR USE IN FLAW DETECTION,
INTEGRITY, DEGRADATION, AND DAMAGE ASSESSMENT, AND FRACTURE ANALYSIS

CD-~88-32706

BENEFITS OF ANALYTICAL ULTRASONIC NDE

 IMPROVED BASES FOR ASSESSMENT OF FLAW CRITICALITY, FRACTURE ANALYSIS,
AND MECHANICAL MODELING

* ABILITY TO DEAL MORE EFFECTIVELY WITH ADVANCED MATERIALS SUCH AS METAL
AND CERAMIC MATRIX COMPOSITES, TOUGHENED CERAMICS, AND CARBON-CARBON
COMPOSITES

* ABILITY TO VERIFY AND CERTIFY MATERIAL QUALITY AND KEY MATERIAL PROPERTIES

CD-88-32707
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NONDESTRUCT IVE EVALUATION BY ACOUSTO-ULTRASONICS

Harold E. Kautz
Structural Integrity Branch
NASA Lewis Research Center

ABSTRACT

Acousto-ultrasonics is an ultrasonic technique that was originally devised to
cope with the particular problems associated with nondestructive evaluation
(NDE) of fiber/polymer composite structures. The fiber/polymer composites are
more attenuating to ultrasound than any other material presently of interest.
This limits the applicability of high-frequency ultrasonics. A common use of
ultrasound is the imaging of flaws internal to a structure by scattering from
the interface with the flaw. However, structural features of composites can

scatter ultrasound jnternally, thus obscuring such flaws.

A somewhat unique need relative to composites is to be able to nondestruc-—
tively measure the strength of laminar boundries in order to assess the integ-
rity of a structure. Acousto-ultrasonics has exhibited the ability to use the
internal scattering to provide information for determining the strength of lam-
inar boundries. Analysis of acousto-ultrasonic signals by the wave ray paths
that compose it leads to waveform partitioning that enhances the sensitivity

to mechanical strength parameters.
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PROBLEM: ULTRASONIC CHARACTERIZATION OF COMPOSITES

It is difficult to analyze ultrasonic signals recovered from composites by con-
ventional methods. This is demonstrated below for 'pulse-echo' ultrasonics
(Hull et al., 1985). Case A shows an echo recovered from a metal specimen as
used for precise velocity and attenuation determination. Case B is an echo
from a laminated composite where considerable internal scattering has intro-
duced ambiguity into the signal. These 'noisy' signals can be difficult to
interpret, necessitating a different approach. An approach referred to as
acousto-ultrasonics is described next.
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-200
- | |
400 50 100
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TRANSDUCER\II

30
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I I |
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—_— TIME, usec
CD-88-32283
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THE ACOUSTO-ULTRASONIC TECHNIQUE ‘

Acousto-ultrasonics (A-U) employs two transducers:

(1) A sender injects ultrasonic energy into the specimen.
(2) A receiver detects the energy after interacting with the specimen.

Rather than avoiding the multiple reflections in a composite, A-U uses them to

sense mechanical strength. A-U imitates the stress waves of acoustic emission

with ultrasonics in place of mechanical stress. This is totally nondestructive
(Vary and Bowles, 19793 Vary, 1979, 1982, 1987).
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THE STRESS WAVE FACTOR

Acousto-ultrasonic signal strength is calculated as the stress wave factor
(SWF). Two common measures of SWF are energy and ringdown count. Energy is
measured by

t22
SWF = V™ dt

Y

~where V is receiver output voltage. Ringdown count measured by the number
of voltage peaks above threshold is illustrated below.

3.0 —
15 |— - THRESHOLD
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TIME

CD-88-32285
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EARLY RESULTS WITH THE STRESS WAVE FACTOR AND
GRAPHITE/POLYMER COMPOSITES

Acousto-ultrasonic and ultrasonic attenuation measurements were made on
graphite fiber/polymer matrix panels at various stages of impact damage. The
SWF and ultrasonic attenuation were calculated for each stage and compared
with the number of impacts (Williams and Lampert, 1980), as shown in the
figure on the left side.

Acousto-ultrasonic measurements were made on bend specimens prior to destruc-
tive testing. The SWF was compared to the interlaminar shear strength (ISS)
as calculated from the bend test results (Kautz, 1986). These are shown in
the figure on the right side.

%

O SPECIMEN 1
A SPECIMEN 2
_~VIRGIN SPECIMENS
30 — { 10 IMPACTS 50 =
- kz:xs;ﬁguunass COEFFICIENT
STRESS T
WAVE [;I
FACTOR
25 — 40 IMPACTS A =
100 IMPACTS —~
\U D
I 1 l |
2 10 20 0 9 10x 106
ATTENUATION AT 2.0 MHz, Np/cm INTERLAMINAR SHEAR STRENGTH, MPa

CD- 88 132286

3-71



MORE RECENT RESULTS WITH SWF

Graphite fiber/polymer matrix specimens were put under tensile stress to
produce a range of matrix crack densities through the central lamina. The SWF
was measured after each tensile experiment and was compared with the crack
density (Hemann et al., 1987), as shown in the figure on the left.

Acousto-ultrasonic measurements were done on specimens with vulcanized steel-
rubber bonds. The SWF was compared with the strength coefficient from subse-
quent peel tests (Reis and Kautz, 1986), as shown in the figure on the right.

(o] EXPERIMENTAL RESULTS
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GENERAL CONCLUSIONS FOR SWF

When SWF was compared to a bond strength, such as interlaminar shear or against
peel, the SWF was found to increase with the strength. When SWF was compared
to a damage state, such as number of impacts or matrix cracks per centimeter,
the SWF was found to decrease with increasing damage. In all these cases the
SWF was larger for specimens with greater mechanical strength.

MECHANICAL STRENGTH

INTERLAMINAR SHEAR PEEL STRENGTH
STRESS STRENGTH
FACTOR DAMAGE STATE
NUMBER

\ OF
IMPACTS

ATTENUATION MATRIX CRACKS/cm

CD-88-32288
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ANALYSIS OF PROPAGATION PATHS

The acousto-ultrasonic signal that arrives at the receiving transducer is the
superposition of pulses that have traveled different paths and arrive there
over a range of time (Kautz, 1986). This is illustrated below.

Signal propagation paths can be traced experimentally by comparing a fiber-
reinforced resin specimen with a resin alone specimen (Kautz, 1987). Parts A
of the time records shown below reveal a strong fiber path signal in the com-
posite but nothing in the resin alone specimen. Parts B still show a strong
fiber path signal. But in this time region the resin alone shows that signals
are just beginning to arrive at the receiver. Parts C are dominated by resin
path signal arrivals. Parts D are still dominated by resin path signal compo-
nents. However, we see that they are enhanced in the composite by the
presence of the fibers.
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ACOUSTO-ULTRASONIC WAVEFORM PARTITIONING

Propagation path analysis can be used to enhance the sensitivity of SWF to
mechanical properties. This is done by calculating SWF for partitions of the
acousto-ultrasonic signal (Kautz, 1986). Correlation coefficients are shown
for a 10 x 4 matrix of partition SWF values versus crack density for graphite/
polymer specimens. The partitions that extend the highest are portions of the
time-frequency field of the acousto-ultrasonic signal that are most sensitive
to the crack density.

\
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CORRELATION, R2 = 0.82 R? FOR LINEAR
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TIME
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LASER ACOUSTO-ULTRASONICS

Laser in and laser out acousto-ultrasonics will improve reproducibilty by elim-
inating piezoelectric transducer coupling. Input and output position will be
more precisely defined while at the same time permitting better automation for
scanning large panels or other hardware.

Shown below is a laser acousto-ultrasonic signal induced in a fiber/polymer
composite as detected with a piezoelectric transducer. The laser-induced sig-
nal exhibits similar fiber-matrix distribution of ray paths to the one
obtained with a transducer-induced signal.

The laser pulse used to produce this signal was 4 nsec in duration. The pulse
should have a frequency spectrum envelope that is about 250 MHz. However the
frequency spectrum of the induced ultrasonic signal is typical of that pro-
duced by a 1-MHz or a 2.25-MHz broadband transducer. This makes it quite
appropriate for acousto-ultrasonics.

TRANSDUCER
VOLTS

TIME

CD-88-32291
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FURTHER APPLICATION OF ACOUSTO-ULTRASONICS

Acousto-ultrasonics has shown itself to be sensitive to the strength of struc-
tures at boundaries between both similar and dissimilar materials. For this
reason it is actively being explored as a means of assessing the fiber-to-
matrix bonding in ceramic composites. Similar studies are being conducted to
compare SWF to strength parameters in metal matrix composites as well.

In order to understand and interpret acousto-ultrasonics in ceramic matrix and
metal matrix composites it is necessary to identify the propagation paths that
constitute the signals that are observed.
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CHARACTERIZATION OF SINTERED SiC BY USING NDE

George Y. Baaklini
Structural Integrity Branch
NASA Lewis Research Center

ABSTRACT

Capabilities of projection microfocus x-radiography and of ultrasonic velocity
and attenuation for characterizing silicon carbide specimens were assessed.
Silicon carbide batches covered a range of densities and different microstruc-
tural characteristics. Room-temperature, four-point flexural strength tests
were conducted. Fractography was used to identify types, sizes, and locations
of fracture origins. Fracture toughness values were calculated from fracture
strength and flaw characterization data. Detection capabilities of radiography
for fracture-causing flaws were evaluated. Applicability of ultrasonics for
verifying material strength and toughness was examined. Radiography proved
useful in detecting high-density inclusions and isolated voids, but failed in
detecting surface and subsurface agglomerates and large grains as fracture ori-
gins. Ultrasonic velocity dependency on density was evident. Attenuation
dependency on density and mean pore size was clearly demonstrated. Understand-
ing attenuation as a function of toughness was limited by shortcomings in Kjgo

determination.
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SPECIMEN SINTERING AND HOT ISOSTATIC PRESSING CONDITIONS

Twenty-five modulus of rupture (MOR) bars were prepared from -100-mesh a-SiC
powder containing boron and carbonaceous resin binders. Compaction of the
green specimens included dry pressing the powder by using a double-action,
tungsten-lined die, vacuum sealing the green bars in thin-wall latex tubing,
and cold isopressing the bars at 420 MPa. These bars represent five different
batches which were sintered or sintered and hot isostatically pressed (HP) in
order to tailor their density and microstructure. All bars were machined, the
four long edges beveled, and further polished to a 0.07-um rms surface finish.
Nominal test bar dimensions were 2.72 by 5.58 by 31.71 mm.

Batch Sintering Hot isostatic pressing Density,

number g/cm3
Temper- | Time, Argon Temper- | Time, Argon ! 3
ature, hr pres- | ature, hr pres- [£0.01 g/cm

°C sure, °C sure,
MPa MPa

) 2200 0.5 0.1 —_—— -— -— 3.12

2HP 2200 1.5 2100 0.5 138 3.14

4 2300 1.0 ~— -— - 3.05

4HP 2300 1.0 2150 1.0 138 3.10

5HP 2100 .75 2100 1.0 138 2.92

CD-88-32633
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MICROSTRUCTURAL CHARACTERIZATION

Mean pore size, shape, and orientation were determined from photomicrographs
of polished representative samples from each batch by applying two-dimensional
Fourier transform theory (Generazio, 1986). Mean grain size was determined
from photomicrographs of polished and etched representative samples of each
batch by using an interactive image analysis system where grain boundaries
could be traced at a digitizer tablet.

Batch Densi§y, Mean grain size,? um Mean pore size,a'b um Grain shape
number g/cm
Circle® E11ipsed Circle® Ellipsed:f
Diameter | Major | Minor | Diameter | Major | Minor
1 3.12 5.76 7.94 | 4.56 1.60 1.61 1.59 Equiaxed and
elongated
2HP 3.14 6.75 9.61 | 5.15 1.63 1.75 1.50 Equiaxed and
elongated
4 3.05 11.56 19.39 | 7.73 3.82 4.00 3.64 Elongated
4HP 3.10 11.18 18.08 | 7.82 3.44 3.60 3.27 Elongated
SHP 2.92 3.36 4.40 | 2.78 2.29 2.38 2.19 Equiaxed
8+0,2 um.

No preferred orientation.

Cassuming all grains are equiaxed.
Assuming all grains are elongated.
€Calculated average from f.

Real measurements off the mean shape.

CD-88-32734
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PULSE-ECHO ULTRASONICS OF MOR BARS

Velocity and attenuation measurements were determined for all samples through
_the thickness at three different locations in the highest stressed area of the
test specimen. The pulse-echo technique, with a 100-MHz broadband longitudinal-
wave transducer, was used to measure the cross correlation velocity (Hull et al.,
1985) and the attenuation coefficient from the first and second back surface
reflections. The front surface reflections obtained with and without the bar

in place were used to calculate the reflection coefficient of the buffer rod-
couplant-sample interface. This frequency-dependent reflection coefficient

was incorporated for precision attenuation measurements (Generazio, 1985).
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RADIOGRAPHIC EVALUATION

All specimens were film radiographed in order to detect potential fracture-

. causing flaws. The microfocus system used was operated in the projection mode
(x5 magnification) and in the 30 to 60 kV range with a beam current range of
0.25 to 0.32 mA. The system had a molybdenum anode and a 10-pm focal spot.

All radiographs were manually developed, and were examined with the aid of a

x7 optical measuring magnifier under variable-intensity backlighting (1000 to
9000 1m/m2) in subdued room lighting. Test bars were radiographed in two
modes, the (W,L) mode, where x rays were transmitted through the thickness,

and the (T,L) mode, where x rays were transmitted through the width. When com-
bined, they form a three-dimensional radiographic location of flaws.
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ASSESSMENT OF FRACTURE ORIGINS

Out of 25 specimens tested, 17 fracture origins were identifiable.
shape, size, and location of fracture origins are tabulated below.

The type,
The 17

fracture origins identified were 5 bulk voids, 2 surface voids, 1 iron-rich
inclusion, 1 large grain, 3 bulk agglomerates, and 5 surface agglomerates.

Batch Specimen Type Shape 0,2 1A% or 24, | 2C,2
number nymber um um Hm
! 3 Unidentified | ———————m—eeweca- — — —
) Agglomerate Circular 6 45 45
8 Void Irregular 14 69 69
12 Agglomerate Elliptical 60 40 70
13 Void ENliptical 40 80 104
2HP 2 Void Semi-elliptical 0 19 67
5 Agglomerate Elliptical 12 65 127
8 Void Elliptical 120 58 92
N Unidentified | ————ceecceceae—- _— -— _—
23 Agglomerate Semi-elliptical [ 46 92
4 4 Void Elliptical 50 69 127
14 Void Semi-elliptical 0 S8 1z
15 Unidentified | ————--- —_] — — _—
16 Unidentified ———— | —— -— —
18 Large Grain Trapezoidal 7 34 58
4HpP 1 Unidentified m——— | — —_— —
5 Unidentified | ~———————eemeree | ——e -— _—
8 Fe inclusion | Irregular 50 140 140
9 Unidentified —— ] —— — —_—
24 Unidentified | ———————eemcmee | = — —-—
SHP 35 Agglomerate Semi-elliptical 0 50 150
36 Agglomerate Irregular 0 35 55
37 Agglomerate Semicircular 0 30 200
46 Void ENiptical 120 100 120
59 Agglomerate Circular 0 60 60
aSee sketch below.
| =~ i
%2
o D > ;
- THR
SPECIMEN 722

r
N

-
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FRACTOGRAPHY

Shown below are scanning electron micrographs typical of fracture origins in
sintered SiC MOR bars:

BULK VOID SURFACE AGGLOMERATE

CD-88-32738

BULK VOID (AGGLOMERATE-LIKE) LARGE GRAIN

CD-88-32739
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Seven out of seventeen identified fracture origins were radiographically

RADIOGRAPHIC DETECTION OF FRACTURE ORIGINS

detected. All five bulk voids, one out of two surface voids, and the iron-rich
inclusion, were detected.
large grain were missed.
radiograph was less than or equal to its real size as determined optically.

Batch Specimen | Typed Optical Sensitivity,? Flaw Radiographic flaw
number number flaw percent detected dimensions,
dimensions, um
um T W T W
XW, XL XT, XL
X7 XW
1 3 U -— -— -—- —— —— | -
5 BA 45 45 1.6 0.8 No No
8 Bv 69 69 2.5 1.2 Yes | Yes 43, 85 43, 85
12 BA 40 70 1.4 1.3 No No
13 BV 80 104 2.9 1.9 Yes | No 43, 43 | e
2HP 2 SV 19 67 0.7 1.2 No No
5 BA 65 127 2.4 2.3 No No
8 BV 58 92 2.1 1.7 Yes | No 63, 43 | ~ememmea
n U —] - — —_— | | --
23 SA 46 92 1.7 1.6 No No
4 4 v 69 127 2.5 2.3 Yes | No 105, 105 | —ccommmm
14 SV 58 115 2.1 1.6 Yes | Yes 105, 42 42, 105
15 u —_— --- - — | e | —--
16 V) — — — -— — ] ———
18 LG 34 58 1.2 1.0 No No
4HP 1 U — -— -_— _— —— | =—-
5 U -— -— -— — - | -—-
8 Fel 140 140 5.3 2.5 Yes | Yes 62, 62 62, 62
g u — | 140 -— — | == ---
24 U — 140 -— ——— ——— _—
SHP 35 SA 50 150 1.8 2.7 No No
36 SA 35 55 1.3 1.0 No No
37 SA 130 200 4.8 3.6 No No
46 BV 100 120 3.8 2.2 Yes | Yes | 106, 64 106, 64
59 SA 60 60 2.2 1.1 No No

3, unidentified; BA, bulk agglomerate; BV, bulk void; SA, surface agglomerate; SV, surface
void; LG, large grain; Fel, iron inclusion.

bSensitivity

» 100(XT/T) or 100(XW/W).

{Specimen dimensions measured along thickness, T, width, W, and length, L.
Flaw dimensions XT, XW, and XL measured along T, W, and L, respectively.]
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In general, the flaw size as it appeared on the
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FLEXURAL STRENGTH AND FRACTURE TOUGHNESS RESULTS

Fracture toughness (Kyc) values were obtained from the relationship between

. fracture strength and flaw shape, size, and location based on the work by Brown
and Srawley (1967), Evans and Tapin (1972), Bansal (1976), Bansal and Duckworth

(1977), and Danforth and Richman (1983).

There is no reason to believe, on the basis of an f-test at the 95-percent con-
fidence level (Natrella, 1963), that the five batches differ in strength varia-
bility. Further, there is only reason to believe that the mean strength for
batch 1 exceeds that of batch 4HP; otherwise no differences in mean strengths
of all other batches are noted. This is substantiated by a t-test at the
95-percent confidence level.

On the basis of an f- and t-test at the 95-percent confidence level, none of
the four batches differed in toughness variability or in mean toughness.

Batch Specimen Fracture fracture {o¢)avg- Y/Z Fracture (Krc)avg:
number number strength strength standard toughness, standard
of tensile | at origin, dev;gtvon. Kic deviatit}rzn
surface, as, a 3 MN.m™
o, Hsa MN.m=3/2
uba
1 3 356 — 338448 -— ——— 3.26£0.26
S 389 385 1.27 3.23
8 269 265 1.27 2.80
12 382 369 1.42 3.
13 326 317 1.3 3.
2HP 2 319 319 319252 1.60 2.23 2.8820.65
) 2N 267 1.67 3.59
8 322 305 1.40 3.25
1 402 — — ——
23 281 281 ¥.27 2.42
4 4 265 256 315240 1.44 3.06 3.22+0.39
14 304 304 1.27 2.94
15 342 — — _—
16 366 — _— —
18 296 281 1.60 .67
4HP 1 251 -— 273451 — —— ———————
5 334 _— — —
8 209 201 — —
9 306 —_ —— —
24 2N -— — —
SHP 35 289 289 297425 1.56 3.19 3.2040.73
36 324 324 1.25 2.40
37 288 288 1.25 4.10
46 319 298 1.26 3.75
59 264 264 1.26 2.57
CD-88-32741
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ULTRASONIC VELOCITY AND BULK DENSITY

Average velocity based on three measurements at different locations in the MOR
bar was plotted as a function of bulk density for all 25 bars. The data show
that velocity is an increasing function of density. The average velocities are
1.184, 1.188, 1.169, 1.189 and 1.099 cm/ps for batches 1, 2HP, 4, 4HP, and S5HP,
respectively. By comparing these results with corresponding average bulk den-
sities, there is approximately a l-percent change in velocity for a l-percent
change in density.

1.20 —
Ve 2n
000
1.15 |— BATCH | VELOCITY.
ULTRASONIC NUMBER | cM/ps
VE;Sftzv, o ol 1 184
H o AR 1.188
1.10 50 Ol 4 1.169
o v | uHp 1.189
O | sHp 1.099
1.05 l [ |
2.90 3.00 3.10 3.20

BULK DENSITY. e/cM>

CD-88-32742
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ULTRASONIC ATTENUATION, FLEXURAL STRENGTH, AND FRACTURE TOUGHNESS

Attenuation coefficient results are plotted as a function of frequency for all

- five batches.
location where fracture took place.

boundaries of the data of each batch of specimens.
the frequency regime shown does differentiate substantially between batches on

the basis of their density and microstructural characteristics.

Plotted data are the measured attenuation at or very near the
Dashed lines represent the upper and lower
Attenuation coefficient in

Attenuation

dependency on density can be seen by comparing batch 4 and batch 4HP attenua-
tion data, where a l.6-percent difference in density (also a l-percent differ-
ence in velocity) reflects a 56-percent difference in attenuation at a frequency
Knowing a priori that attenuation is not due to grain boundary-
scattering mechanism (Generazio, 1987), the attenuation data for batches S5HP,

4, and 1 therefore demonstrate the attenuation dependency on density and aver-
age pore size.

of 100 MHz.

ATTENUATION
COEFFICIENT,
NP/CM

5.25 —
4.50 BATCH | DENSITY. | MEAN PORE | FLEXURAL | FRACTURE
NUMBER | 6/cM DIAMETER. | STRENGTH. | TOUGHNESS,
3.75 UM MPA M - w32
3.00 1 3.12 1.60 338448 | 3.26%0.37
2HP 3.14 1.63 319452 | 2.8840.65
2.25 4 3.05 3.82 315440 | 3.2240.39
1.50 4HP 3,10 3.4y 273451 | —mmmmmeee
SHP 2.92 2.38 297425 | 3.20£0.73
.75
0
60 80 100 120 140 160
FREQUENCY., MHz
CD-88-32743
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CONCLUSIONS

Radiography proved useful in detecting high-density inclusions and iso-
lated voids, but failed in detecting surface and subsurface agglomerates
and large grains as fracture origins.

Ultrasonic dependency on velocity was evident.

Attenuation dependency on density and mean pore size was clearly demon-
strated.

Understanding attenuation as a function of toughness was limited, first,
by the fact that one dominant flaw can mask the effect of bulk porosity
and microstructure on strength and toughness and, second, by shortcomings
in Kjc determination.
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SYSTEMS FOR ULTRASONIC SCANNING, ANALYSIS, AND IMAGERY

David B. Stang*, Edward R. Generazio, and Steve Abet
Structural Integrity Branch
NASA Lewis Research Center

ABSTRACT

A variety of ultrasonic scanning and imagery techniques are used to investigate
various aspects of materials and microstructures. Two ultrasonic scanning
systems are in use by the Lewis Research Center's Structural Integrity Branch:
an immersion scanner and a contact scanning system. The basic principles of
scanning are reviewed, examples of images are presented, and structural fea-

tures suggested by these images are discussed. Both of these systems are

custom designed; their unique capabilities, advantages, and disadvantages are
highlighted.

*Sverdrup Technology, Inc., Lewis Research Center Group. Work performed
on-site at the Lewis Research Center under contract NAS3-2410S.

tCleveland State University. Work funded under NASA Grant NCC3-24.
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C-SCAN PRINCIPLES

In general, ultrasonic scans are based on the following procedures: A specimen
with flat, parallel surfaces is immersed in water. A transducer is used to
send a very short pulse which echoes off the front and back as well as flaws
within the specimen. The transducer receives the echoes and they appear on an
oscilloscope (A-scan trace) where echoes returning from points farther from

the transducer are farther to the right on the time trace. Signals of interest
are highlighted by an adjustable time gate, and the peak amplitude of the gated
signal is converted to a dc signal. This signal is used to create an X-y
image (C-scan), where traditionally the signal controls the intensity of an
electrostatic pen moved as the scan progresses by a linkage attached to the
transducer manipulator.
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TYPES OF ULTRASONIC SCANS

In through-transmission scans, two transducers are used - a pulser and a
receiver - and the signal transmitted through a relatively thin sample is
examined in a plane parallel to the sample. In pulse-echo scans, the echoes
are of interest and could be those from the specimen front or back surface or
from inside. The transducer could be focused, where the sound waves converge
to a point. In contact scans, a thin layer of o0il or glycerin is used as
couplant between the transducer and the sample in place of water.

IMMERSION IMMERSION CONTACT
THROUGH TRANSMISSION PULSE-ECHO PULSE-ECHO

Y

CD-88-31753
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THROUGH-TRANSMISSION C-SCAN OF COMPOSITE PANEL

Displayed here is a conventional through-transmission C-scan image of a carbon
composite panel produced by the electrostatic pen method. Higher amplitude
transmitted signals are indicated by dark traces. The lower amplitude areas
suggest poor bonding, but good contrast and quantitative results are difficult
with this method.
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MODIFIED IMMERSION ULTRASONIC SCANNING SYSTEM

An ultrasonic C-scan system was modified by omitting the use of the electro-
static pen plotter and sending the peak-detected dc signal to an analog-to-
This signal is sent to a MICROVAX II computer which

digital converter (A/D).

controls the scan and acquires the digitized data through the IEEE-488

(general-purpose interface bus).

A Grinnell image processor then displays a

gray scale or color image of the scan.

TIME DELAY
TRIGGER SCOPE
PULSER RECEIVER
PEAK DETECTOR AID
TRANSDUCER
z{ ! SCANNER

0 - "0
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DIGITAL SURFACE SCAN IMAGE

This is an image obtained from a scan using a 75-MHz transducer focused at the
surface. The scanner resolution is 96 um (the limit of this system is 24 um),
and such an image can be zoomed to virtually any size. Note that not only are
the coin's stamped features vividly brought out, but also small flaws such as

nicks are imaged.

DIRECT SURFACE REFLECTION USING FOCUSED TRANSDUCER

e
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DIGITAL THROUGH-TRANSMISSION IMAGE OF METAL MATRIX PANEL

Shown here is a through-transmission image of an iron-aluminum matrix, silicon

carbide reinforced panel, produced using the modified C-scan system and 20-MHz

transducers. The color scale indicates decibels of attenuation compared with

a signal traveling through water unobstructed. This method of scanning creates

a more quantitative and better contrasting result. The difference in attenua-
tion can indicate the quality of bonding between matrix and reinforcement since
a poor bond would cause ultrasonic energy to reflect rather than transmit

through.

ATTENUA-
TION
dB

CD-88-31757
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RAYLEIGH WAVE SIGNAL

Another type of ultrasonic scan involves the recording of the surface
(Rayleigh) wave signal by moving a focused transducer closer to the surface
than the focal length. A wave traveling from the outer portions of the lens
at some critical angle relative to the specimen surface will produce a surface
wave in the sample and return again to the transducer lens. This signal
appears slightly later than the main surface echo and can thus be recognized
and gated (Gilmore et al., 1986; and Quate, 1980).
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RAYLEIGH WAVE SCAN IMAGE

Images produced from the acquisition of the Rayleigh wave peak indicate fea-
tures on the specimen surface as well as those near the surface (within a wave-
length). Shown here is a scan using a 50-MHz transducer of a silicon carbide
bar with seeded subsurface 50-um voids. Such features cause disturbances in
the Rayleigh signal, producing diffraction-like ring patterns.
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BAR WITH SEEDED VOIDS
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CONTACT SCANNING AND ANALYTICAL ULTRASONICS

Analytical ultrasonics refers to any method where waveforms (as opposed to
simply a peak) are processed to reveal how microstructure alters the wave.
Here, two successive back wall echoes are processed to find attenuation versus
frequency. Sound velocity can also be calculated by finding the travel time
between pulses. These methods generally are used for finding bulk character-
istics rather than individual defects (Vary, 1986).
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IMAGING SUBTLE FEATURES WITH ANALYTICAL ULTRASONICS

Shown here are contact scans of a monolithic silicon carbide disk. Variations
| in the sound velocity indicate differences in density over the area of the
disk that x rays cannot image as well. In addition, differences in pore size
are indicated by variations in ultrasonic attenuation (Generazio et al., 1988).

ORIGINAL PAGE I8
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¢ PRECISION ACOUSTIC IMAGING IS MORE SENSITIVE THAN X-RAY RADIOGRAPHY
e COMPLETE, DETAILED INFORMATION NOT AVAILABLE BY ANY OTHER TECHNIQUE

e DENSITY OF CERAMIC IS DIRECTLY RELATED TO VELOCITY
* PORE SIZE IS DIRECTLY RELATED TO ATTENUATION L0-87-27471
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ULTRASONIC VELOCITY OF ALUMINA SAMPLE

This is an x-y image representing the velocity of sound through the bulk of

an alumina specimen. The scan resolution is 0.5 mm; the sound velocity ranges
from 0.984 (light areas) to 0.994 cm/usec (dark areas). The regions of lower

velocity are believed to be slightly more porous.
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FLAW CHARACTERIZATION IN STRUCTURAL CERAMICS USING SCANNING
LASER ACOUSTIC MICROSCOPY

Don J. Roth
Structural Integrity Branch
NASA Lewis Research Center

ABSTRACT

The ability of scanning laser acoustic microscopy (SLAM) to characterize arti-
ficially seeded voids in sintered silicon nitride structural ceramic specimens
was investigated. The voids ranged from 20 to 430 um in diameter and were
embedded up to 2 mm beneath the surface of the specimens. Probability of
detection was determined as a function of void depth and size. Trigonometric
relationships and Airy's diffraction theory were used to obtain predictions of
void depth and size from acoustic diffraction patterns produced by the voids.
Agreement was observed between actual and predicted void depths. However, pre-
dicted void diameters were generally much greater than actual diameters. Pre-
cise diameter predictions are difficult to obtain because of measurement
uncertainty and the limitations of the 100-MHz SLAM applied to typical ceramic
specimens.

PRECEDING PAGE BLANK NOT FILMED
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OVERVIEW

FLAW CHARACTERIZATION IN STRUCTURAL CERAMICS USING SCANNING LASER
ACOUSTIC MICROSCOPY

OBJECTIVE: DETERMINE ABILITY OF SLAM TO CHARACTERIZE (SIZE, DEPTH)
INTERNAL FLAWS IN CERAMIC SPECIMENS

EXPERIMENTAL APPROACH: SINTERED SILICON NITRIDE SPECIMENS WITH
ARTIFICIALLY SEEDED INTERNAL VOIDS

RESULTS AND CONCLUSION: (1) LARGE MEASUREMENT UNCERTAINTY DUE TO
EXPERIMENTAL CONFIGURATION
(2) UNCERTAINTY SEVERELY AFFECTED VOID SIZE
PREDICTIONS WHICH DEVIATED MORE THAN 100%
FROM ACTUAL SIZES
(3) REASONABLE AGREEMENT BETWEEN PREDICTED
AND ACTUAL VOID DEPTHS
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FRACTURE STRENGTH VERSUS FLAW TYPE AND SIZE

Experiment Rationale: Relationships between fracture strengths
sizes, shapes, and locations are being actively investigated to
standing of structural ceramic mechanical behavior. Therefore,

to develop accurate flaw characterization techniques for use on

specimens.

AFTER EVANS (1984)
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SCANNING LASER ACOUSTIC MICROSCOPY (SLAM)

The experimental setup for scanning laser acoustic microscopy of ceramic speci-
mens is shown below.

RECEIVER SCANNING LASER

DYNAMIC RIPPLE -

GOLD REFLECTIVEFILM -, N | 7/} /7 COVERSLIP
N b +~ CERAMIC SPECIMEN WITH
WATER —% — / SEEDED INTERNAL VOIDS
COUPLANT ~__ 1\ / LY " __~LASER-SCANNED SURFACE

[EZOELECTRIC
RANSDUCER, 100 MHz
LAM STAGE
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POSTER PRESENTATION
PURPOSE OF STUDY

Structural ceramics exhibit wide variability in strength and low fracture
toughness because of their brittle nature (Lenoe, 1983; Shannon, 1981; and
Salem, 1985). Generally, failure is attributed to discrete flaws such as
microcracks, voids, impurities, and oversized grains (Evans, 1984; Heitman,
1983; and Sanders, 1986). The relationships between fracture strengths and
flaw types, sizes, shapes, and locations are being actively investigated for
structural ceramics as indicated in the figure. Therefore, the ability to
accurately characterize existing flaws in these materials by nondestructive
evaluation (NDE) techniques has become extremely important.

AFTER EVANS (1984)
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SCANNING LASER ACOUSTIC MICROSCOPY (SLAM)

The following is a brief description of the principles of operation of SLAM.
Continuous 100-MHz ultrasonic waves traveling through a specimen produce micro-
distortions on the specimen surface farthest from the transducer. The distor-
tion pattern is determined by the microstructural, bulk, and surface features
of the material. A laser beam constantly raster scans a small area of the
specimen. The laser beam, angularly modulated by the distortion pattern, is
reflected to a photodetector and converted to an electronic signal. In this
manner, an "acoustic'" image of the specimen, including surface and internal
flaws such as voids, inclusions, and cracks, is obtained and displayed on a
video monitor in real time at approximately 100x (Roth, 1986a and b; Roth
1987; and Generazio, 1986).
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SPECIMEN PREPARATION

Sintered Si3N, specimens containing seeded internal voids were fabricated by
using the processing steps shown in the figure and described in detail by
Baaklini (1986). Briefly, plastic microspheres of various sizes were embedded
in green specimens and later burned out to create voids within sintered

specimens.

-100 MLSH SisN4 POWDER
+ SINTERING AID POWER

Y
POWDER PLACED IN DIE

Y

NOMINALLY 530, 320, 115, 80,
OR 50 ym DIAMETER PLASTIC
SPHERES PLACED ON POWDER

y

MICROSPHERE POSITIONS
PHOTOGRAPHICALLY RECORDED

/

MICROSPHERES COVERED
WITH POWDER AND PRESSED
AT 120 MPa TO FORM GREEN
TEST BAR

Y

BAR ISOPRESSED
AT 420 MPa

Y

BAR HEATED (45-60 min
HOLD AT 550 °C) UNDER
VACUUM TO BURN OUT
MICROSPHERES

l

SizNy SINTERED
2140 °C
2hr
5 MPa No PRESSURE
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. pOOR QUALITH
OF PO CHARACTERIZATION OF SPECIMENS

The seven sintered silicon nitride specimens were microstructurally character-
ized as shown in the table. The 12 internal voids seeded in the specimens
ranged from 20 to 430 pm in diameter and from O to 2 mm in depth (Roth, 1987).

CHARACTERIZATION OF SPECIMENS

TEST | NUMBER |LENGTH| THICKNESS, DENSITY POROSITY | AVERAGE PEAK-TO-VALLEY SEEDED INTERNAL VOIDSS
BAR | OFTEST | X (mm) DISTRIBUTION |  GRAIN | ROUGHNESS,{um} OF -
MATERIAL{BARS USED | WIDTH, (glec) | % SIZE, GROUND | AS-FIReD | TOTAL | DIAMETER. |DEPTH BELOW SPE-
{(mm) THEORET- (um) SURFACE | SURFACE | NUMBER (um) CIMEN SURFACE
ICAL {mm)
SINTERED 7 30x6 274|320 ~100 LESS AT 0.5-1.5¢ [RELATIVELY | RANDOMLY 12 20-430 0-2
SigNg ,EDGE THAN ORDERED | ORIENTED
{S5N) s | AT CENTER 0.5-3.5° . 3.0-7.5° N
L

|
I
|
t
|
1

\\.
N\
L

1mm

[
100 pm 100 pm

A0PTICAL PHOTOGRAPH (GROUND SURFACE SHOWN),

BOPTICAL MICROGRAPH OF METALLOGRAPHICALLY POLISHED SECTION (BLACK SPOTS INDICATE POROSITY).

CAVERAGE GRAIN SIZES OBTAINED USING THE HEYN INTERCEPT (MEAN FREE PATH) METHOD GIVEN IN ASTM E112-81,

4TRANSMISS ION ELECTRON MICROGRAPH OF REPLICA OF METALLOGRAPHICALLY POLISHED AND ETCHED SECTION

€SRFACE PROFILE (USING A 12.5 um DIAMETER DIAMOND STYLUS) {PERPENDICULAR TO GRINDING MARKS FOR SPECIMEN WITH GROUND SURFACE).
fOPTICAL MICROGRAPH.

9CHARACTERIZED AFTER SINTERING SPECIMEN AND EXPOSING VOIDS TO SURFACE.

15T '88 CD-88-32542
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ORIGINAL PAGE IS
SEEDED INTERNAL VOIDS OF POOR QUALITY,

The seeded internal voids were exposed to the surface by grinding. At this
point, the void dimensions were measured optically, and the void depths at the
various SLAM inspections were determined (Roth, 1987).
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ORIGINAL PAGE 1S
OE POOR QUALITY

ACOUSTIC IMAGE OF INTERNAL VOID

The acoustic image of an internal flaw often consists of a diffraction pattern
rather than a facsimile image of the flaw. In this case, it is especially

difficult to characterize the flaw.

However, techniques have been investigated

from which it is theoretically possible to predict flaw shape, size, and depth
by using acoustic diffraction patterns (Generazio, 1986; Roth, 1986b and 1987).
Measurements obtained from the acoustic images were used to obtain predictions
of void diameter and depth (Roth, 1987).
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ORIGE ALITYI

OE POOR QU PROBABILITY OF DETECTION OF INTERNAL VOIDS

Probability-of-detection data for the seeded internal voids as a function of
void diameter and void depth is shown (Roth, 1986b). The range of depths and
diameters for which 90 percent or higher probability of detection (at a 95 per-
cent confidence level) was achieved is indicated by the outlined region for
sintered silicon nitride specimens (Roth, 1986).
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PREDICTED VOID DEPTHS AND DIAMETERS USING SLAM

Predictions of depth and diameter were determined for 4 voids at 23 depths.

The 23 predicted void depths deviated less than 70 percent from actual depths
and 17 were within 20 percent of actual depths.
deviated more than 100 percent from actual values in all cases but one (Roth,

1987). Examples are shown in the table.

[

ACTUALVOID AT ACTUALVOID| PREDICTED | PREDICTED
DIAMETER, DEPTH, DIAMETER, DEPTH,
um um um um
403 AT 1897 1113 1917
252 AT 568 790 616
139 AT 197 571 153

30 AT 19 135 54

5-118
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MEASUREMENT UNCERTAINTY

Measurements obtained from the acoustic images were used to obtain predictions
of void diameter and depth. Precise measurements were not possible. Void diam-
eter predictions were more severely affected by the measurement uncertainty
than were void depth predictions. Measurement uncertainty was expected to
increase with increasing void diameter and decreasing void depth (Roth, 1987).
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VOID
DEPTH,

um

VALIDITY OF RELATION USED TO PREDICT VOID DIAMETER

The range of void depths and diameters that produced discernible diffraction
patterns is shown in the figure below in the area labeled "experimental data
region." It is expected that for voids of these diameters and depths, the
relation used to predict void diameter is of questionable validity. The rela-
tion is most valid for void depths and diameters in the "extreme Fraunhofer
region" (far field). Extreme Fraunhofer conditions are difficult to approach
with the 100-MHz SLAM configuration applied to typical ceramic specimens
(Roth, 1987).
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CONCLUSION

Probability of detection was determined for seeded internal voids in sintered
silicon nitride specimens as a function of void size and depth. The acoustic
images produced by the voids were used to obtain predictions of void size and

depth.

The measurements taken from the acoustic images of the internal voids had large
uncertainty associated with them (Roth, 1987). The measurement uncertainty
severely affected the prediction of void diameter. Additionally, the relation
used to predict void diameter may be of questionable validity for the condi-
tions of this experiment. As a result, predicted void diameters were generally
much larger than actual void diameters (Roth, 1987). The measurement uncer-—
tainty affected the prediction of void depth less severely. Hence, reasonable
agreement was observed between predicted and actual void depths (Roth, 1987).
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NONDESTRUCTIVE EVALUATION OF SINTERED CERAMICS

George Y. Baaklini, Stanley J. Klima,
and William A. Sanders*
Structural Integrity Branch
NASA Lewis Research Center

ABSTRACT

Radiography and several acoustic and thermoacoustic microscopy techniques are
investigated for application to structural ceramics for advanced heat engines.
A comparison is made of the results obtained from the use of scanning acoustic
microscopy (SAM), scanning laser acoustic microscopy (SLAM), and thermoacoustic
microscopy (TAM). These techniques are evaluated on research samples of green
and sintered monolithic silicon nitrides and silicon carbides in the form of
modulus-of-rupture (MOR) bars containing deliberately introduced flaws.
Strengths and limitations of the techniques are described, with the emphasis
being on statistics of detectability of flaws that constitute potential fracture
origins. Further, it is shown that radiographic evaluation and guidance helped
develop uniform high-density Si3N; MOR bars with improved four-point flexural
strength (875, 544, and 462 MPa at room temperature, 1200 °C, and 1370 °C,
respectively) and reduced scatter in bend strength.

*Materials Division.
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OVERVIEW ORIGINAL FA
ACOUSTIC MICROSCOPY -

SAM uses a single transducer to generate and receive ultrasonic energy
(Nikoonahad, 1984). Good resolution and sensitivity are achieved by focusing
moderately high-frequency ultrasonic energy (30 to 100 MHz) on a small spot,
raster-scanning the lens with respect to the sample, and then time-gate sam-
pling the reflected ultrasonic pulse amplitude. Any features that produce an
acoustic impedance mismatch within the sample, or that produce a change in
acoustic impedance at the specimen surface, can cause detectable variations in
the digitized and stored spatial map of reflected signal amplitude. Images of
microflaws are generally sharp. Depth location of flaws is easy to determine.
Access is needed to only one side of the test sample. Further, SAM can be
adapted to handle curved surfaces. Detection and resolution of microflaws are
affected by (1) surface roughness (2) ultrasound depth of penetration, and

(3) the aperture size of the lens. SAM images are not generally displayed in
real time because computer time is needed to process the entire block of data

used to produce the image.

SAM IMAGE OF VOIDS IN A SILICON NITRIDE MOR BAR

SEEDED VOIDS (WHITE SPOTS) 20 xm DIAMETER, 1 mm DEEP
DIAMOND GROUND SURFACE, 2 um FINISH

ULTRASONIC REFLECTION MODE

90 MHz TRANSDUCER, SPHERICALLY FOCUSED

CD-88-32329
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DETECTION OF VOIDS WITH ACOUSTIC MICROSCOPY

Scanning laser acoustic microscopy (SLAM) uses 100 MHz ultrasonic waves that
are transmitted through the specimen and are modulated by material surface and
internal characteristics. The relative intensity and phase of the waves are
detected by a laser beam that is raster-scanned over an area approximately

2 mm2. Features such as cracks, voids, density variations, etc. are displayed
in real time on a video monitor at x100. SLAM images are affected by the sur-
face roughness of the test object. Unlike SAM, SLAM has a limited capability
for handling complex shaped objects, and also requires access to opposite sides
of the sample. The plot below summarizes SLAM probability of detection (POD)
data obtained for internal voids in specimens with diamond-ground surfaces
(Roth and Baaklini, 1986). The boundaries of the bar graphs indicate the mini-
mum void sizes and maximum depths (from the laser-scanned surface) at which the
0.90/0.95 POD/confidence level was achieved. Also shown is a single data point
representing preliminary results obtained with the SAM technique. All of the
38 voids (nominal diameter 20 um) were detected 1 mm below the surface of
silicon nitride samples, yielding a POD better than 0.90/0.95 (Klima et al.,
1986).

90% PROBABILITY OF DETECTION AT 95% CONFIDENCE LIMIT
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POSTER PRESENTATION il
THERMOACOUSTIC MICROSCOPY

Thermoacoustic microscopy (TAM) measures relative differences in surface and
near-surface thermal properties of the material being evaluated (Rosencwaig,
1980). The absorption of intensity-modulated electromagnetic radiation (usually
a laser or an electron beam), focused at any point on the sample, gives rise to
localized cyclic heating and cooling that, in turn, generates elastic waves at
the modulation frequency. The amplitude and phase of these waves can be meas-
ured either at another location on the specimen surface by a piezoelectric
crystal in contact with the specimen, or in the surrounding gas medium by a non-
contacting method using a sensitive microphone. A sensitive, high-resolution
image representing varying thermal characteristics of the sample can be gen-
erated point-by-point using this technique. Its applicability to engine parts
can be limited by vacuum requirements, coating requirements, and shape com-
plexity. By utilizing the electron beam method, TAM proved to be useful for
detecting tight surface cracks and pits on research samples, as shown below
(Klima et al., 1986).

CD-88-32331
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DETECTABILITY OF FRACTURE-CAUSING TYPE OF FLAWS VIA
RADIOGRAPHY AND ACOUSTIC MICROSCOPY

A comparison is made between acoustic and radiographic techniques for detecting
fracture-causing defects such as voids, cracks, and inclusions. In general,
acoustic microscopy is not applicable to green ceramics because either (1) the
sample is damaged by the presence of a liquid-coupling medium or (2) the sur-
face of the sample is damaged by the intensity of the laser or electron beam

energy sources. However, acoustic microscopy can be successfully used to char-
acterize small areas of sintered ceramic parts.

suitable for characterizing both green and sintered ceramics.

TECHNIQUE DEFECT TYPE RESOLUTION LIMITATIONS COMPONENT APPLICABILITY
SLAM CRACKS UNDEFINED SURFACE ROUGHNESS, | THIN SECTION,
MATERIAL DEPENDENT, | SIMPLE SHAPES
VOIDS 25 ym NEAR SURFACE
INCLUSIONS 25 ym
SAM CRACKS UNDEFINED SURFACE ROUGHNESS SMALL AREAS
VoIDS 20 um
INCLUSIONS 20 um
TAM VOIDS 25 pm SURFACE CHEMISTRY, SMALL AREAS
(LASER) ABSORPTIVITY,
INCLUSIONS 25 ym NEAR SURFACE
TAM CRACKS 1 um WIDE SURFACE ROUGHNESS, | SIMPLE SHAPES,
(ELECTRON REQUIRES VACUUM, SMALL AREAS
BEAM) voIDS 10 uxm REQUIRES COATING,
NEAR SURFACE
INCLUSIONS 10 um
MICROFOCUS | CRACKS ORIENTATION DEPENDENT | SMALL ABSORPTIVITY FILM-UNIFORM
X RAY DIFFERENCES THICKNESSES
VOIS 1-2% REAL TIME-COMPLEX
GEOMETRIES, REDUCED
INCLUSIONS 5% SENSITIVITY
GRADIENTS 2%
cT CRACKS ORIENTATION DEPENDENT | SLOW COMPLEX GEOMETRIES
X RAY
VOiDS < < 1%
INCLUSIONS < < 5%
GRADIENTS < < 2%
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RADIOGRAPHIC EVALUATION OF NASA 6Y Si3Ny

In mechanical properties of Si3Ny, scatter is generally attributed to defects
and inhomogeneities occurring during powder processing and/or during fab-
rication of parts (Bowen, 1980, and Evans, 1982). Based on preliminary

. x-radiographic characterization work on Si3N, by Klima (1986), a program was
undertaken to systematically investigate density-gradient, flexural-strength
relationships as affected by sintering and powder-processing variables for sin-
tered Si3Ny. All batches were radiographically evaluated at all stages of fab-
rication. Test bars were radiographed in the (W,L) and (T,L) modes where x rays
are transmitted through the thickness and the width of the bar, respectively.
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COMBINED EFFECT OF MODIFIED PROCESSING/SINTERING PROCEDURES
ON THE FLEXURAL STRENGTH OF NASA 6Y Sij3Ny,

The sintering variables were (1) temperature (2) nitrogen pressure (py) (3)
time (tg) (4) spacer contact area (BN), and (5) furnace position. The powder-
processing variables were (1) grinding time t and (2) inclusion or exclusion
of powder wet-sieving procedures. The cumulative positive effects of all the
variables on flexural strength are shown below. (For more information, see
Sanders and Baaklini (1988).) In processing from batch to batch (baseline to
28 to 29 to 31), the room-temperature strength continually increased, with an
overall improvement of 56 percent, and more than a threefold reduction in the
standard deviation. The summary of individual parameter effects on room-
temperature strength is shown in the table below. Strength improved 28 and 21
percent for 1200 and 1370 °C, respectively. All successive improvements in the
mechanical properties were guided by x-radiographic characterization.

900 — ROOM TEMPERATURE 1200 °C 1370 °C

800 — 31

700 — BATCH

29 NUMBER .
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— TION, LINE LINE
- n7| | 108) 13| mpa 153 55 33 39 43 59
100 — DENSITY,
.02 |3.2f |3.23 {324 giem?

tgh 24 100 100 300 24 100 300 24 100 300
t,h 1 2 2 2 1 2 2 1 2 2
Py, MPa 2.5 50 50 5.0 2.5 50 5.0 2.5 5.0 5.0
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INDIVIDUAL PARAMETER EFFECTS ON
ROOM-TEMPERATURE STRENGTH

VARIABLE LEVELS ROOM-TEMPERATURE CONCLUSIONS
STRENGTH CHANGES,
MPA
BN SPACER CONTACT MAX — MIN +197., +157 EXTREMELY HELPFUL
SINTERING TIME 1—-1.25 HR +129
1 —=1.5HR +87 VERY HELPFUL
1 —2 HR +145
SINTERING TEMPERATURE | 2050 — 2140 OC -117 VERY HELPFUL
SIEVING NO —YES +60 HELPFUL
GRINDING TIME 24 —100 HR -61, -13
24 300 HR +41, +54 VERY HELPFUL
100 —300 HR +102, +67. +62, +125
SINTERING HEIGHT LOW — HIGH +24 SLIGHTLY HELPFUL
NITROGEN PRESSURE 2.5 —<3.5 MPa -205
3.5 —=5.0 MPa H)5, 429, 24 INCONCLUSTVE
2.5 —=5.0 MPA -181

3-130

CD- 88-32334




NASA 6Y SINTERED SILICON NITRIDE IMPROVED BY
RADIOGRAPHICALLY-GUIDED PROCESSING CHANGES

The successful use of conventional x-radiography in guiding the fabrication
process resulted in denser and more uniform Si3N, over the baseline materials.
Previously dominant failure-causing voids were replaced by large grains, which
are less detrimental to strength properties. The improved structure can be
attributed to (1) increased powder fineness that improves sinterability and uni-
formity (2) powder wet sieving that results in reduction of agglomerates and
certain impurity particles (3) minimizing BN spacer contact that results in more
uniform densification as a consequence of more uniform heating (4) an increase
in sintering time from 1 to 2 hr, thus improving density and uniformity, and

(5) raising sinter cup height to reduce the top bar to bottom bar temperature
gradient.

CD-88-32336
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SUMMARY

* ACOUSTIC MICROSCOPY CAN BE USED TO CHARACTERIZE SMALL AREAS OF SINTERED
CERAMIC PARTS, BUT IT IS NOT APPLICABLE TO GREEN PARTS

* RADIOGRAPHY IS SUITABLE FOR CHARACTERIZING BOTH GREEN AND SINTERED
CERAMIC PARTS

* RADIOGRAPHY IS VERY BENEFICIAL IN GUIDING POWDER PROCESSING AND SINTERING
PARAMETER CHANGES FOR IMPROVED Si3N4

—IMPROVED Si3N4 EXHIBITED HIGHER DENSITY, LOWER DENSITY GRADIENT, AND
BETTER BAR-TO-BAR UNIFORMITY

—IMPROVED SigNg POSSESSES LESS SCATTER IN BEND STRENGTH, IMPROVED
STRENGTH, AND LESS CRITICAL DOMINANT FLAW

CD-88-32337
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FRACTURE MECHANICS
SESSION OVERVIEW
John L. Shannon, Jr.
Fatigue and Fracture Branch
NASA Lewis Research Center
INTRODUCTION
The topical areas of fatigue crack intiation, crack growth, and fracture are
treated in Sessions 2 and 8 of this Symposium. Not all aspects of these com-

plicated subjects have been studied. Therefore, past and current results are
presented with the admission that much has yet to be learned.

PRECEDING PAGE BLANK NOT FILMED
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GRAIN BOUNDARY OXIDATION AND LOW CYCLE FATIGUE
AT ELEVATED TEMPERATURES

Fatigue life consists of crack initiation and subsequent propagation. Accurate
life prediction requires a methodology for quantifying these two fatigue proc-
esses.

The two predominant high-temperature low cycle fatigue (LCF) damage mechanisms
are creep and oxidation. The question that arises is — Which mechanism domi-
nates at the temperature of concern? Understanding grain boundary oxidation
kinetics, morphologies, and statistical distributions, plus factors which
influence them for a range of practical structural alloys, is an important part
of the work described in this Session by Liu and Oshida of Syracuse University.
The principal product of their work is a method for extrapolating laboratory
oxidation data to the prediction of life of engineering structures.

CD-88-33278
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ELASTOPLASTIC CRACK PROPAGATION AT ELEVATED TEMPERATURES

The work reported in this segment has the objective of developing methods for
characterizing and predicting crack growth at elevated temperatures considering
nonlinear material behavior (both time-dependent and time-independent), thermal
gradients, and thermomechanical cycling. This work is being done at General
Electric, Aircraft Engine Group, Evendale, Ohio, with the specific purpose of
predicting crack growth rates and critical crack sizes in the hot section envi-
ronment of turbine engines, relating the processes that control crack growth

in the immediate vicinity of the crack tip to parameters that can be calculated
from remote quantities such as forces, stresses, or displacements. The approach
is to survey and compare, in comprehensible terms, the many current path-
independent integrals; to computer test at least five of these using a common,
simple problem; to validate them by laboratory experiment using extensive

crack displacement measurements, first on an analog material at moderate tem-
peratures (not exceeding 500 °F) and then a nickel-base alloy at temperatures
approaching 2000 °F.; and finally to use the developed methodology to predict
life of model structures in a laboratory situation where crack propagation
within temperature gradients, with or without thermomechanical cycling and
creep, is the operative life consuming process.

CD-88-33279
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INSITU FATIGUE LOADING STAGE INSIDE A SCANNING ELECTRON MICROSCOPE

This work, which is being done by Telesman and Kantzos of Lewis and Brewer of
the Army Propulsion Directorate (located at Lewis), recognizes the difficulty
of explaining and predicting fatigue life without fully understanding the early
stages of fatigue, which accounts for the greater part of total fatigue life.
Telesman et al. describe a unique facility for observing in real time and at
high magnification and resolution the damage mechanisms associated with fatigue
crack initiation and propagation. The facility consists of a fatigue loading
stage contained within a scanning electron microscope and operates at both
ambient and elevated temperatures. Fatigue damage mechanisms are observed

and coupled with quantitative data, such as crack tip strain field, to produce
an improved understanding of fatigue behavior and life prediction methodology
for engineering structures.

CD-88-33280



MIXED-MODE FRACTURE MECHANICS

Fatigue crack initiation and propagation under mixtures of loading modes I and
II are operative in aircraft engine bearings. Current aircraft engines operate
at load levels beneath concern. Tomorrow's aircraft engines, on the other
hand, are intended to operate at load levels where catastrophic failure is a
possibility. Experimental and analytical approaches to this potential problem
are described by Buzzard and Ghosn of Lewis.

_— OUTER RACEWAY (REGARD AS FIXED)

—

_— INNER RACEWAY (ROTATES WITH SHAFT)

ZINCIPIENT CRACK

HERTZIAN LOAD
AT
\‘\_3 J /’
COMPRESSION —~

E UNIAXIAL TENSION
(SURFACE + CENTRIFUGAL STRESSES)]

¢ ROLLING ELEMENT LOAD IS ADDED TO UNIAXIAL LOAD
» SUBSURFACE VOID FORMS

* CRACK AT SURFACE-SURFACE SPALLS

e CRACK GROWS DOWNWARD-RACE FAILS

< 1nox.uns ELEMENT

CD-88-33281

3-139




FRACTURE TECHNOLOGY FOR BRITTLE MATERIALS

Research began at Lewis in 1977 on the challenge of measuring the fracture

resistance of brittle nonmetallic materials in terms
in design. The accomplishments toward standardizing
ing the plane strain fracture toughness of ceramics,
of variable crack resistance behavior, are presented.
outlined.
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FRACTURE TECHNOLOGY FOR BRITTLE MATERIALS

Jonathan A. Salem
Fatigue and Fracture Branch
NASA Lewis Research Center

ABSTRACT

Ceramics materials have the potential for use in high-temperature, fuel-
efficient engines. However, because these materials are brittle, their frac-
ture characteristics must be well documented prior to their application. Thus
Lewis is working to understand the fracture and strength properties of brittle
ceramic and ceramic matrix materials. An understanding of fracture properties
aids both designers who are attempting to design high-temperature structures
and materials scientists who seek to design more temperature-resistant
materials. Both analytical and experimental approaches to fracture analysis
are being taken (Bubsey et al., 1983). Methods for testing fracture tough-
ness, crack growth resistance, and strength are being developed (Salem and
Shannon, 1987; Salem et al., 1988). The failure mechanisms at both room and
elevated temperatures are also being investigated (Jenkins et al., 1988).

Such investigations aid materials scientists in developing better high-
temperature materials. Of concern is the anisotropy of ceramic materials and
the experimental verification of ceramic design codes that will allow brittle
material behavior to be accurately predicted at high temperature.
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OVERVIEW
FRACTURE TOUGHNESS TEST METHOD FOR CERAMICS

Ceramic materials have potential applications in high-temperature, fuel-
efficient engines, but these materials are brittle. Thus Lewis has developed
a fracture testing methodology for brittle materials (Bubsey et al., 1983).
The procedure accurately measures the fracture toughness of brittle, flat,
crack-growth-resistant materials (Salem and Shannon, 1987).
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TOUGHENING MECHANISMS IN CERAMICS

The development of more crack-growth-resistant ceramic materials for use in
high-temperature structures requires an understanding of energy-dissipative

failure mechanisms.

material's properties, better materials can be manufactured.

If these mechanisms are understood and related to the

In contrast to

metals, where the energy-dissipative process that produces toughness is
deformation accompanied by cracking, ceramics adsorb energy by plastic
microcracking, crack surface friction, or both (Jenkins et al., 1988; Salem

et al., 1988).

CRACK
GROWTH
RESISTANCE,
MPa m1/2

60

cRaCKk %0

GROWTH
RESISTANCE,
Jm?2 g

MICROCRACKING

GRAIN BRIDGING
AND SECONDARY
CRACKING

2 4 6 8

CRACK EXTENSION, Aa, mm

HIGH-TEMPERATURE
PARTICLE SEPARATION

D,

ROOM-TEMPERATURE
PARTICLE CRACKING

10

CD-88-31870

TEMP.,
°C

~20

200

—400
~600

- 800
1000

l l

- 1200
1400

1 2
CRACK EXTENSION, Aa, mm

CD-88-32467



POSTER PRESENTATION

FRACTURE TOUGHNESS TEST METHOD FOR CERAMICS

Ceramic materials have potential applications in high-temperature, fuel-
efficient engines, but these materials are brittle. Thus Lewis has developed
a fracture testing methodology for such brittle materials (Bubsey et al.,
1983; Salem and Shannon, 1987). The test specimen and the experimental load
displacement record used to calculate the material's fracture toughness Kic
are shown below. The calculation defined in the lower graph involves the use
of an experimental or analytical calibration known as a stress intensity
coefficient Y* (Munz et al., 1980). The coefficients are dependent on the

specimen geometry and the loading configuration.
method is that it does not require measurement of
test methods do.
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CRACK GROWTH RESISTANCE OF CERAMICS

Brittle ceramic materials must be able to withstand crack-like damage. This
ability is often referred to as 'crack growth resistance." To determine the
level of crack growth resistance in ceramics, Lewis has applied fracture
mechanics measurement techniques to ceramics (Salem et al., 1988). The crack
mouth opening displacement behavior of a specimen under load, or its compli-
ance, is measured as shown below. The compliance is used with compliance -
crack length relations to determine the crack length as shown in the lower
left-hand graph. The crack growth resistance of the material can be calcula-
ted from the crack length and stress intensity coefficients (previous page).
Results for various orientations of an extruded Alp03 ceramic are also illus-
trated here.
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CRACK-GROWTH-RESISTANCE MECHANISMS IN CERAMICS

The development of more crack-growth-resistant ceramic materials for use in
high-temperature structures requires an understanding of energy-dissipative
failure mechanisms. If these mechanisms are understood and related to the
material's properties, better materials can be manufactured. In contrast to
metals, where the energy-dissipative process that produces toughness is
plastic deformation accompanied by cracking, ceramics adsorb energy by micro-
cracking, crack surface friction, or both. The upper graph shows micro-
cracking, bridging, and secondary cracking in an alumina ceramic that exhibits
rising crack growth resistance (Salem et al., 1988). Although cracking often
imparts improved properties, in some cases it does not, as for the SiC/TiBo
composite shown in the lower graph (Jenkins et al., 1988).
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ANISOTROPY OF Al03 AND SiC WHISKERS FOR COMPOSITES

The introduction of ceramic whiskers into ceramic and metallic materials
results in composite materials with unique properties. Single-crystal whiskers
exhibit thermal and elastic anisotropy that can be used to tailor composite
properties to the needs of designers. Thus an understanding of thermal

and elastic properties of whiskers as a function of orientation is necessary

in the design of ceramic- and metal-matrix composites. The property varia-
tions depend on the crystallographic structure of the material. Whiskers of
Al1,03 have a hexagonal crystal structure, and both the elastic modulus and the
coefficient of thermal expansion vary with crystal orientation, as shown in the
upper two plots. SiC is a cubic crystal structure and therefore does not
exhibit variation in the coefficient of thermal expansion but does exhibit a
large variation in elastic modulus, as shown in the bottom figure (Salem

et al., 1986).
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MODE || FRACTURE MECHANICS

Robert J. Buzzard and Louis Ghosn*
Fatigue and Fracture Branch
NASA Lewis Research Center

ABSTRACT

Current development of high-performance rolling element bearings for aircraft
engines (up to 3 million DN, where DN is the product of shaft diameter in mil-
limeters and speed in revolutions per minute) has aroused concern about fatigue
crack growth in the inner bearing race that leads to catastrophic failure of
the bearing and the engine. A failure sequence was postulated by Srawley
(Buzzard et al., 1986), and an analytical program was undertaken (Ghosn, 1988)
to simulate fatigue crack propagation in the inner raceway of such a bearing.
A fatigue specimen has been developed at NASA (Buzzard et al., 1986) by which
fatigue data may be obtained relative to the cracking problems. The specimen
may be used to obtain either mode II data alone or a combination of mixed-mode
(I and II) data as well and has been calibrated in this regard (Buzzard and
Gross, 1988). Mixed-mode fracture data for M-50 bearing steel are presented
herein, and a method for performing reversed-loading tests is described

(Buzzard, 1988).

*Cleveland State University, Cleveland, Ohio 44115 (work funded under
NCC3-463 monitor: John L. Shannon, Jr.) and NASA Resident Research Associate.
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OVERVIEW
MODE II MECHANISM AND MODEL

High-performance rolling element aircraft engine bearings may become vulnerable
to catastrophic fatigue failure as future requirements push them to ever higher
operational limits. A postulated mechanism is described (Buzzard, et al.,
1986) and an analytical model developed (Ghosn, 1988).
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MODE II TEST METHOD
A mode II fatigue and fracture specimen and test method have been developed at
NASA for use in addressing the potential bearing failure problem (Buzzard

et al., 1986). Use of the method has been extended to include mixed-mode test-
ing (Buzzard and Gross, 1988) and reversed load testing (Buzzard, 1988).
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POSTER PRESENTATION
BEARING RACE FAILURE SEQUENCE

High-performance rolling element aircraft engine bearings are being developed
for operation at very high rotational speeds (i.e., high DN values). This
gives rise to concern regarding possible fatigue cracking of the inner bearing
race and subsequent catastrophic failure of the bearing and the engine.

The following basic model was suggested by Srawley (Buzzard et al., 1986).
Consider a section of a bearing race in which a location just below the sur-
face is vulnerable to void initiation and growth resulting from the intense
shear associated with the passage of individual rolling elements during engine
operation. At DN values of about 1.7 million (the present commercial 1limit)
this repetitive loading, in addition to constant hoop stress resulting from
centrifugal force and the shrink fit of the race over the shaft, can cause
crack growth from the void location to the surface, resulting in a spall. This
situation can be monitored by various means and the bearing eventually retired.
Under these loading conditions the critical crack size for continued growth is
larger than the thickness of the race and therefore further crack growth would
not be catastrophic. However, at DN values near 3 million (expected in the
near future) the critical crack size is only about 1/5 of the thickness of the
race. A small crack may be driven toward this size by alternating mode II
stresses as the rolling elements pass by, followed by catastrophic mode I fail-
ure when the crack reaches its critical size.

It was primarily to address this problem in the laboratory that a specimen and
a loading method were developed at Lewis. The specimen must contain a single
notch to simplify data analysis and the monitoring of fatigue crack propaga-
tion, and the initial mode I stresses must be insignificant in comparison with
the mode II stresses. Self-similar crack growth under mode II loading is
desired but is obtainable only for structural materials that are less brittle
than hardened bearing steel. Fatigue data for materials that do not exhibit
self-similar crack extension must be analyzed in mixed-mode terms.
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An analytical program was undertaken to simulate fatigue crack propagation in
the inner raceway of high-speed bearings (Ghosn, 1988). The analysis makes use
of the boundary integral method with a multidomain formulation. The multido-
main formulation allows the two faces of the crack to be modeled in two differ-
ent subregions, making it possible to analyze crack closure when the roller is
positioned on or close to the crack tip. The stress intensity factors Kj and
K11 along any direction are computed. These calculations permit determination
of the crack growth direction along which the crack driving force is maximum.
For brittle materials the fatigue crack driving force is the alternating Ki,
but since the mean stress intensity is not constant during the loading cycle,
the alternating Ky is an insufficient parameter. The mean stress effect is
corrected for by assuming the crack driving force to be the product of the

mean times the alternating Kj.
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STRESS INTENSITY FACTOR VARIATIONS

The crack extension in a high-speed bearing was simulated numerically by using
the multidomain boundary integral equation method (Ghosn, 1988). The graphs
show typical variations of the normalized mode I and mode II stress intensity
factors (K;/o a and Kyj/o a, respectively). An original straight crack,

a/b = 1.0, was extended in the direction of the maximum crack driving force.
For a/b 1.0, the maximum crack driving force was along an angle © equal
to 71°. As the Hertzian load passed over the crack, the stress intensity fac-
tors, Ky and Ky1, decreased and then increased. These variations in K1 and
Krr can result in a fast-growing crack in the inner raceway that can cause the
complete failure of the bearing.

TYPICAL VARIATION OF STRESS INTENSITY FACTORS WITH ROLLER POSITION
FOR KINKED CRACK (a/b=1.0, 6=71°, 1=0.2)
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MODE II TEST METHOD

A novel mode II test specimen and testing fixture have been developed at Lewis
that may aid in understanding phenomena associated with mixed-mode fatigue
failures in high-performance aircraft engine bearing races (Buzzard et al.,
1986 and 1987). The specimen contains one single-ended notch, which simplifies
data gathering and reduction; the fatigue crack grows in-line with the direc-
tion of load application in many engineering materials; a single-axis test
machine is sufficient to perform testing; and the mode I component can be prac-
tically eliminated if so desired.

The figure shows the shape of the specimen and the testing fixture/loading
method. As a compressive load is applied, relative movement of the clevises
causes a shearing force to be applied to the specimen along the loading axis.
Rotation of the specimen is prevented by the lower loading pin.

The specimen has been calibrated (Buzzard and Gross, 1988) and analyzed by pho-
toelastic and finite element methods (Gross et al., 1986).
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OF POOR Q MODE II FRACTURE PATH

Mode II fracture and fatigue tests have been performed for hardened M-50 bear-
ing steel and for less brittle engineering materials (steels and aluminum
alloys). Under identical loading conditions the fatigue and fracture paths for
the two classes of materials are quite different, as shown below for the test
zone of a specimen of each class.

The fracture and high-load fatigue crack path for an aluminum engineering alloy
is shown (in the photograph on the left) to extend in-line with the axis of
major load application. It is reasoned that relative displacement of the two
specimen halves along the loading line, promoted by plasticity and possible
void growth at the crack tip, contribute to this observed behavior. At low
fatigue loads, however, the crack proceeds in a direction of about 70° toward
the tensile-loaded leg of the specimen (crack not shown). This direction is
predicted by the maximum tangential stress and minimum strain energy criteria.
The '"threshold'" load responsible for the difference in behavior has yet to be
investigated more thoroughly (Buzzard et al., 1986).

The fracture and fatigue path at both high and low loads for the brittle bear-
ing steel (shown in the photograph on the right) extends only in the direction
of about 70° from the tip of the precrack toward the tensile-loaded leg of the
specimen, as predicted by theory.

This ''dual' behavior suggests that the type of material, the loading restraints
affecting structural mobility, and the magnitude of the load, in addition to
the possibility of plasticity or void growth at the crack tip, must be given
consideration when analyzing the direction of mode II crack progression.

ALUMINUM ALLOY BEARING STEEL

o

RACTURE PATH
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MIXED-MODE AND REVERSED-LOAD TEST METHODS

Mixed—mode (I and II) testing, wherein the mode I component is fixed and the
mode II component is variable, may be accomplished with the NASA mode II test
system (Buzzard and Gross, 1988). Spacers are placed beneath one of the load-
ing pins as shown on the left. Application of a compressive load causes this
loading pin to move outward (or inward, if desired) by a fixed distance deter-
mined by the thickness of the spacers. This distance is monitored by a stand-
ard ASTM clip gage, which spans the specimen along the loading pins' horizontal
centerline. As the moving pin becomes seated in the vee-notch, lateral move-
ment ceases and further load application results in loading in the shear direc-
tion only.

Reversed loading, or loading the specimen through zero load, may also be accom-
plished by modifying the testing fixture as shown on the right (Buzzard, 1988).
Adding the loading pin retainer straps allows a tensile load as well as a com—
pressive load to be applied. Rotation of the specimen when under reversed
loading is prevented by adding a block at the lower loading pin.

Both of these modifications may be incorporated simultaneously if so desired.

MODES | AND Il MIXED MODE 1l REVERSED
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__.________v.lv
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MIXED-MODE TESTING

A knowledge of the mode I and mode II fracture characteristics of a material

is essential to understanding failure initiation in a structure made of that
material and subject to mode I and mode II loading. However, failures in a
structure rarely progress by either of these two modes alone, but rather by a
combination of modes. It therefore becomes necessary to obtain data that
describe the mixed-mode fracture properties of structural materials. Such data
have been recently obtained by Buzzard for hardened M-50 bearing steel and are
presented below.

The plot at the left shows the path taken by a crack under various combina-
tions of mode I and mode II loading to failure. Experimentally obtained data
agree well with values predicted by the maximum tangential stress theory.

Under mixed-mode loading the fracture path ranges from 0° to about 70° from the
tip of the precrack toward the tensile-loaded leg of the specimen. The photo-
graph shows a typical cracked M-50 steel specimen that fractured at an angle

of about 65° under mixed-mode loading.

The plot at the right shows the relative amounts of Ky and Kyy at fracture for
this series of tests.

PRECRACK
- MIXED-MODE
CRACK

STRESS INTENSITY AT FRACTURE FOR
MIXED MODES [ AND I IN
M-50 BEARING STEEL

CRACK PROPAGATION DIRECTION AS
FUNCTION OF Ki/K; RATIO FOR
M-50 BEARING STEEL

9 ™ PREDICTED BY MAXIMUM 30— TEST DATA
TANGENTIAL STRESS O RADIAL
CRITERION - O LONGITUDINAL
/
/
CRACK e 20
GROWTH Kii,
DIRECTION, ksivin.
0, deg
30— 10
| M— Y
0 30 60 90 0 10 20
MIXED-MODE LOADING, Ky, ksivin.
TAN‘1(Kﬂ&ﬂ CD-88-31747



REFERENCES

Buzzard, R.J., Gross, B., and Srawley, J.E., 1986, "Mode II Fatigue Crack
Growth Specimen Development." ASTM STP 905.

Buzzard, R.J., Succop, G., and Gross, B., 1987, "Mode II Test Specimen and
Method." NASA Tech Brief No. LEW-14281. NASA Tech Briefs, Vol. 11, No. 3,
pp. 55-56.

Buzzard, R.J., and Gross, B., 1988, '"Calibration of a Mode II Test Specimen."
ASTM STP 945, March 30, pp. 1083-1088.

Buzzard, R.J., 1988, '"Mode II Fatigue Testing Apparatus.' NASA Patent Applica-
tion LEW 14124-1.

Ghosn, L., 1988, "Crack Propagation in Roller Bearings Using the Boundary Inte-
gral Equation Method - A Mixed-Mode Loading Problem." ASME Journal of Tri-
bology, vol. 110, July 1988.

Gross, B., Buzzard, R.J., and Brown, W.F., Jr., 1986, "Elastic Analysis of a

Mode II Fatigue Crack Test Specimen." International Journal of Fracture,
pp. 151-157.

3-159



N88-22419

IN SITU FATIGUE LOADING STAGE INSIDE SCANNING
ELECTRON MICROSCOPE

Jack Telesman,* Peter Kantzos,’L and David Brewer?
Fatigue and Fracture Branch
NASA Lewis Research Center

ABSTRACT

A fatigue loading stage inside a scanning electron microscope (SEM) has been
developed at the NASA Lewis Research Center. The stage allows dynamic and
static high-magnification and high-resolution viewing of the fatigue crack
initiation and crack propagation processes. The loading stage is controlled
by a closed-loop servohydraulic system. Maximum load is 1000 1b (4450 N) with
test frequencies ranging up to 30 Hz. The stage accommodates specimens up to
2 in. (50 mm) in length and tolerates substantial specimen translation to view
the propagating crack. At room temperature, acceptable working resolution is
obtainable for magnifications ranging up to 10 000X. The system is equipped
with a high-temperature setup designed for temperatures up to 2000 °F

(1100 °C). The signal can be videotaped for further analysis of the pertinent
fatigue damage mechanisms.

The design allows for quick and easy interchange and conversion of the SEM from
a loading stage configuration to its normal operational configuration and vice
versa. Tests are performed entirely in the in situ mode. In constrast to
other designs, the NASA design has greatly extended the life of the loading
stage by not exposing the bellows to cyclic loading.

The loading stage has been used to investigate the fatigue crack growth mechan-
isms in the (100)-oriented PWA 1480 single-crystal, nickel-based superalloy.
The high-magnification observations revealed the details of the crack growth

processes.

PRECEDING PAGE BLANK NOT FILMED

*NASA Lewis Research Center.
TCo—op Student with Case Western Reserve University.
*Army Propulsion Directorate.
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OVERVIEW

MAIN FEATURES OF LOADING STAGE

Some of the main features of an in situ loading stage system developed at NASA
Lewis are highlighted below. A photograph of the loading frame and some of
the major system components are shown.

O O OO

Dynamic observations of fatigue up to 10 000X
Loads up to 1000 1b; frequency up to 30 Hz
High-temperature capability

Interchangeable with normal SEM configuration

e DYNAMIC OBSERVATIONS OF FATIGUE UP TO 10 000X
e LOADS UP TO 1000 Ib; FREQUENCY UP TO 30 Hz
e HIGH-TEMPERATURE CAPABILITY

o INTERCHANGEABLE WITH NORMAL SEM CONFIGURATION

CD-88-32381
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SAMPLE FRACTOGRAPH OF SINGLE CRYSTAL

The fatigue processes in a PWA 1480 single-crystal, nickel-base superalloy
were examined by using the loading stage system. Some of the major observa-
tions are described in this paper. The poster session includes a videotape

presentation of the observed fatigue damage mechanisms. A sample fractograph
is included below.

e FATIGUE PROCESSES IN PWA 1480 SINGLE-CRYSTAL, NICKEL-BASE SUPERALLOY
e FATIGUE CRACK GROWTH BY PLANAR SLIP

e CRACK CLOSURE AND SECONDARY CRACK BRANCHING

o VIDEOTAPE PRESENTATION OF FATIGUE IN A SINGLE CRYSTAL

CD-88-32382

3-163




POSTER PRESENTATION
LOADING STAGE

An overall view of the loading stage, the scanning electron microscope, and
accessories is shown below. On the right is the SEM, in the center is the
loading frame mounted on a four-wheel adjustable height cart, and to the left
is the console housing the controls for the servohydraulic system and the
high-temperature equipment. Not shown in the figure are the color monitor and
the video tape recorder, which are also part of the system.

During the operation of the in-house designed loading stage, the regular SEM
chamber door and the attached specimen stage are swung out of the way. If the
loading stage is no longer needed, the entire assembly is rolled away on the
service cart and the regular specimen stage is swung back into its normal oper-
ating position. This interchange is quick and easy, typically being performed
in only 2 to 3 minutes.

CD-88-32383
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SCHEMATIC OF LOADING STAGE

The entire loading stage system is shown here in schematic form. The system
can be operated either in load or stroke control. The closed-loop servohy-
draulic portion of the system consists of a function generator, load and

stroke conditioners and transducers, and a servovalve mounted to an actuator.
The high temperature is achieved by passing a high current directly through a
heating element surrounding the specimen. The current is applied from a dc
power supply and controlled through standard means. The signal emanating from
the specimen in the SEM can be sent to either a Polaroid camera or a video cas-

sette recorder.

FUNCTION
GENERATOR VCR/MONITOR
A
v
LOAD/STROKE
CONDITIONERS ELECTRON GUN SECONDARY
ELECTRON
st J% DETECTOR
LVDT r |
Y SPECIMEN |
SERVOVALVE k—1 AcTUATOR ! } !
LOAD CELL THERMOCOUPLES { SEM DISPLAY
v Y
POWER SUPPLY/
CONTROLLER VACUUM PHOTOGRAPH
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LOADING FRAME AND COMPONENTS

Detailed views of the loading stage are shown below. A 1l-in. (25-mm) full-
stroke axial actuator is attached to the loading frame. The actuator is driven
by a l-gal/min (4-liter/min) servovalve. Other components such as the load
cell and the linear variable-differential transformer (LVDT) are attached to
either the actuator or the loading rod. The entire assembly is connected to a
support frame by two precision x-y translation stages and is also connected by
a flexible bellows to a specially machined SEM door. The specimen is trans-
lated in the x and y directions by turning the micrometers mounted to the two
translation stages.

ORIGINAL PAGE IS CD-88-32385

OF POOR QUALITY

3-166



GRIP FIXTURES AND SPECIMEN

The specimen is mounted in the grip fixture as shown in
setup illustrated below is for room-temperature testing
of the room-temperature setup allows for a reduction in
to 0.8 in. (20 mm) and this significantly increases the
tion of the image.

Two examples of the type of specimen geometries used to
Other configurations are possible because the allowable
is 0.7 by 0.7 in. (18 by 18 mm).

V2N
T Ty
D_,‘:(‘ LUV g

the photograph. The
only. The simplicity
the working distance
maximum useful resolu-

date are shown below.
specimen viewing area
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PERFORMANCE CHARACTERISTICS AND SPECIFICATIONS

The design of the NASA Lewis in situ loading stage offers a number of impor-

tant advantages. Because the bellows are not exposed to
long-duration tests can be performed in the in situ mode.
formed over a wide range of frequencies and temperatures.
easily interchangeable with a normal SEM configuration.
design has all of these advantages.

MAXIMUM CYCLIC LOAD, Ib (N) .....................

MAXIMUM CYCLIC RATE, Hz ........................

MAXIMUM TEMPERATURE (DESIGNED), °F (°C)
USEFUL MAXIMUM MAGNIFICATION

fatigue loading,
Testing can be per-
The system is also
No other existing

ROOM-TEMPERATURE STAGE ......................... 10 000X
HIGH-TEMPERATURE STAGE .......................... 3000X
WORKING DISTANCE, mm
ROOM-TEMPERATURE STAGE ......................ccvnns. 20
HIGH-TEMPERATURE STAGE .............................. 95
VIEWING AREA, in. (mm) .................. 0.7 BY 0.7 (18 BY 18)
CD-88-32387
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HIGH-TEMPERATURE SETUP

High-temperature operation is achieved by resistance heating of a cylindrical
tantalum element surrounding the specimen. The power is supplied by a 625-A-
maximum-current controlled dc power supply. The specimen is heated by radia-
tion from the heating element. The cylindrical heating element is designed
with a slit that enables the electron beam to impinge on the specimen and per-
mits the escape of secondary electrons to the SEM collector. The heat is
removed from the system through a water-cooled loading rod, and the SEM compo-

nents are protected from overheating by three tantalum shields. Six thermocou-

ples monitor the temperature of the specimen as well as the temperature of the
critical SEM components.

C0D-88-32388

3-169




PLANAR SLIP IN PWA 1480 SINGLE CRYSTALS

The fatigue loading stage has been used to investigate fatigue crack propaga-
tion mechanisms in (100)-oriented PWA 1480 single~crystal, nickel-based super-
alloy specimens. The fractographs reveal that the mechanism by which the
crack propagated consisted of planar slip on two different slip planes. The
slip planes were identified later to be (111) and (111). The fractographs
also make it possible to measure crack tip opening displacements and the
extent of damage occurring ahead of the crack tip.

CD-88-32389
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DAMAGE AHEAD OF CRACK TIP AND CRACK CLOSURE VOR QUALITY

Observation of the fatigue damage processes in PWA 1480 single crystals
reveals cracking ahead of the crack tip and the extent of the damage zone.
The upper fractographs reveal the details of the damage occurring from planar
slip as well as secondary branch cracking taking place between slip bands.
The two bottom fractographs reveal regions of crack closure behind the crack
tip even though the pictures were taken with the specimen under a relatively
high axial tensile load.
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INTERACTION OF CRACK WITH STRENGTHENING PRECIPITATES

High-magnification micrographs reveal the interaction of a crack in a PWA 1480
single crystal with the gamma prime strengthening precipitates. Instances of
small-scale vibrations are noticeable at these high magnifications.
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GRAIN BOUNDARY OXIDATION AND LOW-CYCLE FATIGUE
AT ELEVATED TEMPERATURES™

H.W. Liu and Y. Oshida
Syracuse University
Syracuse, NY

ABSTRACT

Fatigue life consists of fatigue crack nucleation and propagation periods. In
order to predict fatigue life accurately, a methodology for the quantitative
assessment of these two fatigue damage processes had to be devised.

Grain boundary oxidation penetrates faster than does oxidation within a grain.
This faster oxidation penetration causes intergranular fatigue failures at ele-
vated temperatures. Grain boundary oxidation accelerates both crack nucleation
and propagation.

Grain boundary oxidation kinetics and the statistical distribution of grain
boundary oxide penetration depth were measured. Quantitative applications of
the grain boundary oxidation kinetics to fatigue crack nucleation and propaga-
tion were analyzed. A method, based on the Weibull distribution, of extrapola-
ting the laboratory oxidation data measured with small samples to large
engineering structures is presented.

%
“Work performed for Fatigue and Fracture Branch and funded under NASA
Grant NAG3-348 (monitor: Jack Telesman).
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DAMAGE MECHANISMS OF HIGH-TEMPERATURE, LOW-CYCLE FATIGUE

At high temperature both creep and oxidation are distinctive LCF damage mech-
anisms. Need exists to identify the regions at which each mechanism is domi-
nant. A quantitative study of grain boundary oxidation and its effects on
fatigue life was conducted.
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STATISTICAL DISTRIBUTION OF GRAIN BOUNDARY OXIDE PENETRATION

Grain boundary oxide penetration depth was measured as a function of oxidation
temperature T and exposure time t. The penetration depth exhibited a wide

statistical scatter which followed the Weibull distribution function as shown

below. The distribution function allowed the extrapolation of the small labo-
ratory samples to the large engineering components in service.

99.9 -
99

90

T

o
=]
BN

PROBABILITY 40

OF FINDING

a<<(q, 20
PERCENT

oy =0.00107
I——(LocATmN PARAMETER)

T |||I]I|

Lo e tatdd Lo bt |
1 2 4 6 1 2 4 6 10 20x10~4

VALUE OF THE CONSTANT «; FOR A GIVEN OXIDE DEPTH a,

CD-88-31865

3-175



FREQUENCY EFFECTS ON FATIGUE CRACK GROWTH AT HIGH TEMPERATURE

A model is proposed that predicts fatigue crack propagation behavior of high
temperatures. The model is based on an intermittent microrupture of oxide par-
ticles which is controlled by grain boundary oxidation kinetics. The model
predicts an inverse relationship between da/dN and cyclic frequency. This
relationship agrees with observed behavior of a number of materials.

MATERIAL TEMP., AK, WAVE FORM
°C MPavm
O INCONEL 718 649 28 I~
@ INCONEL X-750 650 30 AMAN
100 — @ INCONEL X-750 650 30 Y
A ASTROLOY 760 50 NV
A ASTROLOY 650 50 avas
A ASTROLOY 700 10 AMAWV
10-1— 0O 304S.S. 538 30 AW
B WASPALOY 649 30 ww
V7 %Cr-Mo-V STEEL 565 10 ANV
10-2 ¥ 2YCr-Mo STEEL 565 10 MWW
da/dN,
mm/cycle
10-3|—
10-4— 1|>
1
10-5 | l I | l |

10-4 10-3 10-2 10-1 100 107 102
FREQUENCY, (cycle/sec)
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POSTER PRESENTATION

DAMAGE MECHANISMS OF HIGH-TEMPERATURE, LOW-CYCLE FATIGUE
Two primary damage mechanisms of high-temperature, low-cycle fatigue are creep
and oxidation. Both mechanisms are thermally activated as illustrated schemat-
ically below.
The question is not which of these two mechanisms is dominant. The pertinent
question is rather which one is dominant in the high-temperature region and
which in the low-temperature region. Quantitative studies on creep and oxida-

tion damage mechanisms are necessary in order to answer this question.

A quantitative study on grain boundary oxidation and its effects on fatigue
life was conducted.

RATE

In RATE
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OXIDATION AT GRAIN BOUNDARIES

A grain boundary is a path for rapid diffusion. Grain boundary oxidation is
controlled by the diffusion of oxygen along the boundary. The rapid oxygen
diffusion causes a deep grain boundary oxidation penetration, and the fast oxi-
dation penetration causes the accelerated intergranular fatigue fractures at
high temperatures.

TAZ-8A AT 1000 °C FOR 500 HOURS
7

CD-88-31861
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Two different grain boundary oxide morphologies were found:

and the cone
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type. The larger and deeper pancake type is more damaging.
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RELATIONSHIPS MEASURING OXIDE PENETRATION OF GRAIN BOUNDARY
Grain boundary oxide penetration aj in the cobalt-base superalloy, TAZ-8A,
was measured by Liu and Oshida (1984 and 1985) and Oshida and Liu (1985 and
1988) as a function of oxidation temperature T and exposure time t.
The coefficient of correlation is 0.96 for 144 data points. This quantitative

relation was used to study the accelerated fatigue crack nucleation and
fatigue crack growth rate at elevated temperatures.

Am = ot exp <E_19>

0.25 ~4.25
= 1.34t7°7 exp ( ——
()

WHERE
Q = APPARENT ACTIVATION ENERGY
R = GAS CONSTANT

CD-88-31863
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RADIOACTIVE NICKEL PENETRATION AT GRAIN BOUNDARY

Grain boundary morphology and the chemical elements in a grain boundary may
also cause the wide variation in the grain boundary oxide penetration. This
wide variation may cause wide variations in the rates of crack nucleation and
growth and fatigue life. Grain boundary penetration by impurities (radioac-
tive nickel) is a function of the orientations of neighboring grains as shown
below.

200 —

PENETRATION,
pm

BOUNDARY ANGLE, deg
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STATISTICAL DISTRIBUTION OF GRAIN BOUNDARY OXIDE PENETRATION

The statistical scatter of the grain boundary oxide penetration depth follows
Weibull's distribution law as shown below. The variation of the calculated
values reflects the statistical scatter of the measured oxide values. The
empirical distribution law can be used to extrapolate the data obtained in a
laboratory by using small samples to a much larger structural component in
service.
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EFFECT OF PRECRACK ON LOW-CYCLE FATIGUE

When an oxide reaches a critical size under given loading conditions, it will
fracture. A grain boundary oxide crack becomes a fatigue crack nucleus, or a
precrack. The precrack will shorten the crack nucleation period and the total
fatigue life. This reduction in nucleation life will be significant if the cy-
clic frequency is very low, the temperature is very high, and the oxidation ex-
posure time is very long.

The ratio between the fatigue life of a precracked specimen and the fatigue
life of a smooth specimen is a function of the precrack size:

Ngi/Ngo = f(precrack size)

where Ng; 1is the fatigue life of a precracked specimen and Ng¢, 1is the fa-
tigue life of a smooth specimen. The functional relationship between the
ratio and the precrack size can be found empirically.

The wide variations in oxidation penetration and oxide crack size may cause a
wide variation in Nf; and the total fatigue life. A large structural compo-
nent has a high probability of having a large oxide crack and a short fatigue
life. The empirical relation of the equation, together with the grain bound-
ary oxide penetration kinetics and the Weibull distribution, would be able to
predict the effect of the oxide crack on the nucleation life of a structural
component.

In conclusion, quantitative studies based on the physical damage mechanisms
will lead to an improved life-prediction methodology.
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FREQUENCY EFFECTS ON FATIGUE CRACK GROWTH RATE AT HIGH TEMPERATURE

The basic concept of grain boundary oxidation kinetics was used to analyze
fatigue crack growth rate at the elevated temperatures. A high-temperature
fatigue crack growth model based on intermittent microruptures of grain bound-
ary oxides was proposed. The model is consistent with the observed intergranu-
lar fracture and the observed inverse relationship between crack growth rate
and the cyclic frequency in the low-frequency region as shown in the figure
(0Oshida and Liu, 1984 and 1985), Liu and Oshida (1985 and 1986). In the high-
frequency region fatigue failure couli be mixed intergranular and transgranular
or transgranular entirely.

MATERIAL TEMP., Ak, WAVE FORM
°C MPavm
O INCONEL 718 649 28 ~
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ELEVATED TEMPERATURE CRACK GROWTH

KS Kim, RH Van Stone, SN Malik, & JH Laflen

GE-AE, Evendale, Ohio 45215

ABSTRACT

The problem of crack growth in hot path components such as
combustor liners is complicated by several practical and
theoretical considerations. The loading environment of such
components involves high temperature levels and gradients

that lead to considerations such as thermal stresses, crack
closure, hold time, inelastic strains - both time dependent and
independent, and Thermal Mechanical Fatigue (TMF). In general,

a good understanding of the influence of these factors on crack
growth has not been obtained. At the same time, several nonlinear
fracture mechanics parameters have been suggested for such
applications; however, most of the proposed methods have not
been tested for broad applications such as required for hot section
components. It was the purpose of this program to evaluate
proposed nonlinear methods by performing a thorough experimental
and analytical study. The results illustrated that much progress
has been made in developing nonlinear methods. This work was
performed on contract NAS3-23940 with the NASA-Lewis Research
Center.

3-187

PRECEDING PAGE BLANK NOT FILMED



EXECUTIVE OVERVIEW OF: ELEVATED TEMPERATURE CRACK GROWTH

The development of suitable predictive methods for high temperature
inelastic crack growth involved several technology considerations.
The important factors were an outgrowth of the hot path problems, but
there were several factors that called for technology assessments and
development. These latter factors included selection of a lower
temperature alloy to simplify the experimental work; development of
detailed, but proper, experimental methods; selection of appropriate
parameters from a long list of nonlinear Path-Independent fracture
mechanics integrals; and correlation of experimentally measured crack
growth through detailed finite element simulations of the tests to
calculate the nonlinear Path-Independent integrals.

e Alloy selection e Experimental simulations

. . . - Crack release
* Experimental considerations cleas

- Measured boundary

- Specimen development conditions
- Closure measurement - Pl integral correlation
- Temperature gradients

and cycling

¢ Nonlinear fracture mechanics

- Numerous path-independent
integrals

Detailed review

- FEM post-processor
Initial evaluation

Figure 1. Technology Considerations
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EXECUTIVE OVERVIEW OF: ELEVATED TEMPERATURE CRACK GROWTH

The results of the current program strongly suggest that significant
progress has been made in the development of nonlinear fracture
mechanics for application to problems of importance to hot section
components of gas turbine engines. This conclusion is based on a
thorough analytical and experimental evaluation of crack growth in the
nonlinear regime. There, nevertheless, remain areas of developmental
activities such as thermo mechanical fatigue, thermal gradients, and

time dependence.

* Developed new specimen geometry

e Path-independent integrals are available for hot
part applications

e Extensive data base collected

e Excellent isothermal data correlation obtained at 538C

« TMF data tended to agree with max stress isothermal data

e Additional work:
- TMF, thermal gradient, and time dependence
- Crack closure
- Geometry verification
- Numerical improvements

Figure 2. Program Results and Conclusions
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SPECIMEN DESIGN AND MEASUREMENTS

The attached figure shows a schematic of the gage section of the
buttonhead single edge notch specimen that was developed during this
program. Shown in the figure are the locations of the three
extensometers and the potential drop leads (for monitoring crack
length). The control extensometer was used to simulate strain
control, and its value was controlled to vary in a specified way
throughout an experiment. The CMOD gage was used to measure

the occurrence of crack opening and closure. The back surface
extensometer was used with the control extensometer to help establish
the boundary conditions in the FEM analyses. The specimen met often
conflicting goals of the program, and proved to be easy to analyze via
FEM by using the extensometer measurements for boundary conditions.

A :

Potentail

/ Drop
Monitoring %

Extensometer CMOD Gage
Controlling RSN,
Extensometer

Figure 3. Schematic Drawing of SEN Test Method
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LIMITATIONS OF LINEAR ELASTIC FRACTURE MECHANICS

Using the SEN specimen, crack growth properties were measured for a
variety of conditions of interest to hot section components. One basic
property is the effect of inelastic strain on crack growth rate. As
shown in the figure, increasing strain range increases the measured
crack growth rate, even though a linear elastic fracture mechanics
parameter, the stress intensity factor, is used. This result shows that
the effect of inelastic strains is to make predictions based on elastic
fracture mechanics potentially nonconservative. It was for this reason
that the various nonlinear Pl integrals were developed, and it was a
purpose of this contract to determine which approach would provide the
best method for analyzing such conditions.

da/dN (mm/cycle)

10 20 S0 100

Kmax (MPa sqrt m)

Figure 4. Limitation of Linear Elastic Fracture Mechanics
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PROPOSED PATH INDEPENDENT INTEGRALS

A critical element in the program was to evaluate proposed nolinear
fracture mechanics parameters which are Path Independent integrals.
The attached figure shows several proposed methods. For a given
application the easiest way to calculate the value of the parameter

is to perform a FEM analysis, and then use a post processor to evaluate
the integral; this was the approach used in this program. A finite
element post processor was written to calculate the P! integrals for
conditions of interest to hot section components.

Rice's J-Integral

J=Jplaw - t,u,

1,1)d’

£, .
where W = [ Mg ae
o i TTij

Wilson and Yu's Thermoelastic Integral
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W r 1
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Gurtin's Thermoelastic Integral
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and
A
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The Je-Integral by Ainsworth et al.

Iy = {(nlw - tiui'l)ds + { aijeij,ldA

Figure 5. Proposed Path Independent Integrals
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FEM MESH AND BOUNDARY CONDITIONS

To do a FEM analysis, it is, of course, necessary to develop a mesh of
the specimen that is being studied. The attached figure shows the

mesh of the buttonhead SEN specimen that was used in the simulation of
the experimental results. The plane stress model consisted of 421
nodes and 688 constant strain triangular shaped elements. There were
also 33 gap elements located along the plane of symmetry where the
crack was assumed to be propagating. The gap elements allowed the
model to simulate the effect of crack opening and closure. Along the
top half of the model the measured displacements were used as
displacement boundary conditions, so that an exact geometric model of
the specimen was not needed. A large effort including three dimensional
analyses was made to verify that this analysis method was accurate.

_ Control
Displacement Back Face
A Displacement
' i

| |

1 !
|

)
: e SSSS
SE=<
- e ’ ;/
a

Figure 6. Finite Element Model of the Gage Section
of Single Edge Notch Specimen
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ANALYTICAL SIMULATION OF CRACK GROWTH

Besides understanding the boundary conditions, it is also necessary to
simulate the influence of crack closure in the FEM analysis, to correctly
calculate the value of the fracture mechanics parameters while the
crack is open. To include the closure effect, it is necessary to simulate
the plastic wake that is created by a growing crack. The attached figure
schematically shows how the crack was incremented in the analyses.
After a complete loading cycle, simulated by the control displacement
going through a complete cycle, the crack is incremented over the length
of a couple of element widths. Another cycle is then simulated before
the crack is incremented again. In this manner, the whole history of the
loading sequence can be simulated giving confidence in the resulting Pl
integrals. It should be noted that this process is inherently nonlinear;
thus, the analysis has two nonlinear loops since the material is also
nonlinear because of plastic strains.

Load Case
1 2 45 78 10 11 13 14 16 17 19 20 22

(VT

2.54

Crack Length, a, mm

Load Case

Figure 7. Schematic of Loading Steps in Crack
LeRC-LST 'sg  Growth Simulation
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CORRELATION OF FEM AND EXPERIMENTAL RESULTS

After each finite element simulation, it is possible to compare the
accuracy of the analysis with the experiment. This is accomplished by
comparing two test measurements not used in generating the analysis:
neither the applied load (or nominal stress) nor the measured crack
mouth opening displacment, CMOD, are used in the analytical simulations.
The attached figure shows two such comparisons from a single test with
a strain range of 1.15% at two different crack lengths. As shown, the
analytical procedure very accurately predicts the variation in nominal
stress with CMOD for both short and long cracks.

800
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CYANIDE
finite

L element
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’ data 1
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o
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CMOD (mm)

Figure 8. Average Cross Section Stress -CMOD
Hystersis Loop
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PATH INDEPENDENCE

Once the analysis has been shown to correlate with the experimental
measurements, the results can be used with confidence to calculate the
Pl integrals. A fundamental property of the nonlinear fracture mechanics
integrals is path independence. The attached figure shows that this
property was maintained in the current analyses for one of the integrais
that was found to be capable of correlating inelastic strain crack growth.

v Variation of P-I Integral With Path
S : i ?
° O o ’ :jggT - ij;
J* (MP A-M) E .................................................... ;
H— == 5
A S |
s f ' | !
: e .,E...._......“,..,. — . [ . [ — l
T T T T I T
Equivalent Distance from Crack Tip (mm)

Figure 9. Path Independence
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CORRELATION OF CRACK GROWTH DATA

Using the PI integrals and knowing the measured crack growth rates from

a given test, it is possible to determine whether a parameter can correlate
the measured crack growth rates from several different tests. The attached
figure shows that one Pl integral can correlate the crack growth rate results
at one temperature with different strain ranges. The same test results
were shown earlier in a plot which compared the data on the basis of the
stress intensity factor. It was found that several nonlinear parameters
were capable of correlating these data. With parameters such as these,
better predictions of crack growh in hot path components will be possible.

[=]
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x 0.50%
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Figure 10. da/dN Versus ATp
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ANALYSIS OF TEMPERATURE GRADIENT EXPERIMENT

Another factor of importance to predicting crack growth in hot path
components, is the influence of temperature gradients. The attached
figure shows a comparison of predicted load with control displacement
for a cracked SEN specimen which was tested with a temperature
gradient of over 175C maintained over the gage section. As shown, the
response is well predicted using nonlinear FEM analysis.

150

Alloy 718

CYANIDE
FEM 4
analysis

100

Stress (ksi)

50

temperature
gradient tests

1 i Al 1 1 1 1 1 L
0.000 0.002 0.004 0.006 0.008 0.010
Control Displacement (in.)

Figure 11. Analysis of Temperature Gradient Experiment
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FATIGUE AND DAMAGE
SESSION OVERVIEW

Marvin H. Hirschberg
Structures Division
NASA Lewis Research Center

There are seven presentations scheduled for this session. Each presenter will
give an executive overview of approximately 5 minutes followed by a question-
and-answer period of another 5 minutes. All the presenters will also be making
subsequent poster presentations where you will have an opportunity to discuss
the work in much greater detail.

It should be noted that the fatigue and damage and life prediction papers
being presented in this session are all focused on the most significant kinds
of problems and environments associated with hot sections of propulsion sys-
tems. We find, from experience, that the hot section components are the most
life-limiting parts of the systems and have a major impact on both cost and
reliability of these systems. To develop the ability to understand and pre-
dict the structural life of such systems is very difficult and challenging
but, as we will hear, substantial progress has and is being made.

The presentations for this session are as follows:
1. Cumulative Fatigue Damage Models. M.A. McGaw, NASA Lewis.
2. Fatigue Damage Mapping. D. Socie, University of Illinois.

3. Bithermal Fatigue: A Simplified Alternative to Thermomechanical Fatigue.
M.J. Verrilli, NASA Lewis.

4. Life Prediction Modeling Based on Strainrange Partitioning. G.R. Halford,
NASA Lewis.

5. Life Prediction Modeling Based on Cyclic Damage Accumulation. R.S. Nelson,
Pratt & Whitney.

6. Fatigue Damage Modeling for Coated Single Crystal Superalloys.
D.M. Nissley, Pratt & Whitney.

7. Life and Reliability of Rotating Disks. E.V. Zaretsky, NASA Lewis.
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CUMULATIVE FATIGUE DAMAGE MODELS

Michael A. McGaw
Fatigue and Fracture Branch
NASA Lewis Research Center

ABSTRACT

The problem of calculating expected component life under fatigue loading condi-
tions is complicated by the fact that component loading histories contain, in
many cases, cyclic loads of widely varying amplitudes. In such a case one
requires a cumulative damage model, in addition to a fatigue damage criterion,
or life relationship, in order to compute the expected fatigue life. The tra-
ditional cumulative damage model used in design is the linear damage rule.

This model, while being simple to use, can yield grossly unconservative results
under certain loading conditions. Research at the NASA Lewis Research Center
has led to the development of a nonlinear cumulative damage model, named the
double damage curve approach (DDCA), that has greatly improved predictive capa-
bility. This model, which considers the life (or loading) level dependence of
damage evolution, has been applied successfully to two polycrystalline materi-
als, 316 stainless steel and Haynes 188. The cumulative fatigue behavior of
the PWA 1480 single-crystal material is currently being measured to determine
the applicability of the DDCA for this material.

FRECEDING FACE 2LAHZ NoT FILMED
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LITY. OVERV I EW
MISSION HISTORY PRODUCES COMPLEX COMPONENT LOADING HISTORIES

Mission profiles derived from aircraft gas turbine engine usage resolve into
complex thermal and mechanical loading histories on many hot-section compo-
nents. Components whose useful life is limited by such loadings experience
creep and fatigue in varying and interacting degrees, both within a cycle and
over the service life. A typical component is a hot-section turbine blade.

The figure shows the strain history resulting from thermal and mechanical load-
ing induced by the mission history. The strain history is that experienced at
the life-limiting, or critical, location of the turbine blade.

ENGINE

STRAIN

MISSION HISTORY AS SEEN
BY TURBINE COMPONENT

TURBINE COMPONENT

CD-88-32318
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A MORE ACCURATE CUMULATIVE FATIGUE DAMAGE RULE

When considering the life of components subjected to complex fatigue loading
histories in the interest of predicting the useful component life as limited
by fatigue, it is common practice to employ a fatigue crack initiation life
relationship in conjunction with a cumulative damage model. Traditionally the
cumulative damage model used is the linear damage rule. Although using this
rule greatly simplifies life prediction calculations, it can lead to unconser-—
vative results under certain loading conditious. Research at NASA Lewis has
led to the development of a nonlinear cumulative damage model that greatly
increases the accuracy of such calculations. Named the double damage curve
approach (DDCA), this new model considers the life (or loading) level depend-
ence of fatigue damage evolution. In certain cases the predictions resulting
from using the DDCA are nearly an order of magnitude more accurate than those
made under the linear damage rule. Example applications are given below.

LINEAR DAMAGE NONLINEAR DAMAGE
ACCUMULATION ACCUMULATION
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PREDICTED FATIGUE LIFE
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POSTER PRESENTATION
MISSION HISTORY PRODUCES COMPLEX COMPONENT LOADING HISTORIES

Mission profiles derived from aircraft gas turbine engine usage resolve into
complex thermal and mechanical loading histories on many hot-section compo-
nents. Components whose useful life is limited by such loadings experience
creep and fatigue in varying and interacting degrees, both within a cycle and
over the service life. A typical component is a hot-section turbine blade.

The figure shows the strain history resulting from thermal and mechanical load-
ing induced by the mission history. The strain history is that experienced at
the life-limiting, or critical, location of the turbine blade.
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LINEAR DAMAGE RULE

When considering the life of components subjected to complex fatigue loading
histories in the interest of predicting the useful component life as limited
by fatigue, it is common practice to employ a fatigue crack initiation life
relationship in conjunction with a cumulative damage model. Traditionally the
cumulative damage model used is the linear damage rule (Miner, 1945). This
rule considers the evolution of fatigue damage to be independent of the life
(or loading) level. This implies that all life levels share the same fatigue
damage evolution curve, regardless of the shape of this curve. Although this
assumption greatly simplifies life prediction calculations, in certain cases
it can lead to unconservative results. An example of this is high-amplitude
straining (low-cycle fatiguing) followed by low-amplitude straining (high-
cycle fatiguing). The life predicted by the linear damage rule for this case
can be in error from that observed in experiment by as much as nearly an order
of magnitude, depending on the relative life levels involved (Manson and
Halford, 1981).
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A MORE ACCURATE CUMULATIVE FATIGUE DAMAGE RULE

Research at NASA Lewis has led to the development of a nonlinear cumulative
damage model that greatly increases the accuracy of cumulative fatigue life
calculations. Named the double damage curve approach (DDCA), this new model
considers the life (or loading) level dependence of fatigue damage evolution
(Manson and Halford, 1986). In this way each life level possesses an indi-
vidual damage evolution curve, the shape of which may vary to the extent that
the relationship to the other life curves is maintained. In certain cases
such as in the previous example, wherein a block of low-cycle fatigue is fol-
lowed by high-cycle fatigue to failure, the predictions resulting from the use
of the DDCA are nearly an order of magnitude more accurate than those made
under the linear damage rule. These predictions thus more realistically model
the fatigue damage interaction behavior of polycrystalline materials.
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DEVELOPMENT OF DAMAGE CURVE APPROACH

The approach taken at Lewis has been to phenomenologically model the damage
accumulation process. It is generally recognized that the major manifestation
of fatigue damage is the creation, nucleation, and growth of cracks. Although
the usual approach is to treat a single, dominant crack, the early stages of
development of such a crack are characterized by many complicated processes,
including dislocation agglomeration, subcell formation, multiple microcrack
formation, and the growth of these cracks to the point of linkup to form the
dominant crack. Clearly the mechanisms by which fatigue damage occur are com-
plex, and thus an empirical formulation of the "effective crack growth" equa-
tion was developed that accounts for the effects of these processes without
specifically identifying them (Manson and Halford, 1981). Taking the effective
crack growth as the measure of fatigue damage and applying it to the multiple
loading level case resulted in the damage curve approach (DCA). A schematic
representation of the damage evolution described by this approach is shown in
the figure. Note that, in contrast to the linear damage rule, the dependence
of damage evolution on life (or loading) level is accounted for in the damage
curve approach.
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DEFICIENCIES OF DCA AND DLDR

The damage curve approach provided a much more realistic picture of fatigue
damage accumulation under variable amplitude loading. However, experience
with the approach in conjunction with prior work on another cumulative damage
method, the double linear damage rule (DLDR), suggested that the single-term
DCA was perhaps overly conservative in certain cases (Manson and Halford,
1985). This was especially evident in the two-level loading.case, wherein
low-cycle fatiguing for a certain number of cycles is followed by high-cycle
fatiguing to failure. In this case the DCA predicts a substantial reduction
in remaining high-cycle-fatigue capability for small amounts of low-cycle
fatigue. In contrast, the double linear damage rule, a method that models the
accumulation of fatigue damage by considering the process as the sum of two
linear damage accumulation regimes, predicts a more physically realistic behav-
jor in this case. This leads to the consideration of a double-term damage
curve equation that would accurately model damage accumulation behavior while
retaining the attractive aspects of the DCA.
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DEVELOPMENT OF DOUBLE DAMAGE CURVE APPROACH

To ameliorate this difficulty with the DCA, we developed another term, guided
by the experience provided by the double linear damage rule (DLDR). The
resulting expression was termed the double damage curve approach (DDCA) (Manson
and Halford, 1985). As the figure shows, at low values of the cycle fraction,
the DDCA followed closely the damage accumulation behavior predicted by the
DLDR, but at mid to high values of the cycle fraction it followed the DCA.

The resulting cumulative damage equation retains the attractive features of
the DCA, viz, no specialized materials tests are required and the equation is
cast in terms of the life level, so that any appropriate fatigue life expres-
sion may be used to relate the fatigue life to macroscopic variables such as
strain or stress. Note that in the DDCA (and the DCA as well) the degree of
damage interaction depends on the ratio of the life levels involved; the fur-
ther apart the respective low- and high-cycle-fatigue life levels are, the
more pronounced is the interaction.
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APPLICATION OF DDCA TO POLYCRYSTALLINE ALLOYS

The DDCA has been applied to two polycrystalline materials: 316 stainless
steel and Haynes 188, as shown in the figures (Manson and Halford, 1985). For
the 316 stainless steel the low-cycle-fatigue portion of the tests was con-
ducted under thermomechanical conditions and the high-cycle-fatigue portion
under isothermal conditions to loosely approximate the loading experienced by
a component in a rocket engine undergoing initial firing and subsequent opera-
tion. The nature of the thermomechanical cycle used for the low-cycle fatigue
was such that a negligibly small amount of creep was introduced, so that the
failure mode was by transcrystalline cracking (fatigue failure). The cumula-
tive damage analysis of these experiments could therefore be made only on con-
siderations of fatigue damage. The tests conducted on the Haynes 188 material
were performed under isothermal conditions, with the strain rates such that
creep was precluded. In general, the predictive accuracy of the DDCA in these
two cases was quite good and represented a substantial improvement over the
linear damage rule.

HAYNES 188 AT 1400 °F (BIZON, ET AL.) 316 STAINLESS STEEL
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na/Ng
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APPLICATION OF DDCA TO SINGLE-CRYSTAL ALLOY PWA 1480

Recent cumulative damage work being carried out at Lewis concerns the cumula-
tive fatigue damage behavior of two materials of interest in space shuttle main
engine (SSME) turbopump applications: MAR-M 246 + Hf, the current bill of
materiel for SSME turbine blading, and a single-crystal superalloy, PWA 1480,
a candidate replacement material for turbopump blading. The work will identify
the cumulative damage behavior of these materials, so that the relative appli-
cability of the polycrystalline-based DDCA may be determined. Experimental
results to date have only been obtained for the single-crystal material, with
limited cumulative fatigue data having been generated. This material contains
significant levels of microporosity as a result of current processing tech-
niques; microporosity is generally responsible for producing failure in
fatigue. The effects of microporosity have been incorporated into the base-
line fatigue life relationship for this material (McGaw, 1987), so that the
reference life levels can be more accurately determined for the cumulative
fatigue analysis. The microporosity-compensated interaction data generated to
date are shown in the figure, with the DDCA prediction. Additional experi-
ments are being conducted to more clearly determine the cumulative fatigue
behavior of this material.
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FATIGUE DAMAGE MAPPING

Darrell Socie
Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign

Observations of fatigue crack nucleation and early growth are presented.
The state of stress/strain has been shown to play a significant role in
this process. Early growth occurs on planes experiencing the largest
range of shear strain (Mode II) or normal strain (Mode I) depending on the
stress state, strain amplitude, and microstructure. These observations

- have been summarized in a fatigue damage map for each material. These

maps provide regions where one fatigue failure mode dominates the
behavior. Each failure mechanism results in a different failure mode.
Once the expected failure mode has been identified, bulk deformation
models based on the cyclic stresses and strains can be used to obtain
reliable estimates of fatigue lives for complex loading situations.

Work done under NASA Grant NAG3-465.
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EXECUTIVE OVERVIEW OF FATIGUE DAMAGE MAPPING

A fatigue damage map for Inconel 718 loaded in cyclic tension is
given below. The vertical scale 1is presented in terms of life fraction
and the horizontal scale in terms of fatigue life. The solid line repre-
sents the first observation of a surface crack 100 uym long and serves as a
demarcation between initiation and growth. The dashed line represents the
demarcation between crack growth on planes of maximum shear strain ampli-
tude and crack growth on planes of maximum principal strain amplitude.
Region A is characterized by shear initiation followed by extensive shear
crack growth with final failure occurring by a linking of shear cracks
similar to the tearing of perforated paper. Region B is characterized by
shear initiation followed by crack growth along the principal stress
direction. A third region is often observed at long 1lives and small
strains where there is no observable initiation or shear initiation
resulting in nonpropagating cracks. A separate damage model is required
for each region.

f IN-718, Tension
<«— Region A + B
*‘ﬁ\

SG Tensile Crack Growth
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EXECUTIVE OVERVIEW OF FATIGUE DAMAGE MAPPING

The damage maps indicate that a shear strain baged theory is most
appropriate for this material for lives below about 10° cycles. One such
damage parameter has been proposed by Fatemi and Socie (1985)

Two parameters are considered to cause fatigue damage. The primary damage
is caused by the cyclic shear strains (y). Stresses normal to the cyclic
shear strain tend to open any microcracks and enhance their growth. Hence
the second term can be interpreted as including crack closure effects.
The term also includes effects from any additional cyclic hardening that
is often observed during nonproportional loading. The stress normal to
the shear crack (o,) is normalized with the yield strength (o ) to retain
the . dimensionless Yeatures of strain. In this formulation’ no fatique
damage is computed for planes in the material that do not experience
cyclic shear strain. Results are presented for a wide variety of loading
histories including tension, torsion, biaxial tension, and tests with
complex multiaxial mean stresses. Both proportional and nonproportional
tests are included. This degree of correlation is only possible because
the damage mechanism does not change for the variety of tests considered
here.
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FATIGUE DAMAGE MAP FOR INCONEL 718

Test data from individual stress states are summarized in the fatigue
damage map for Inconel 718 given below. The vertical axis has now been
plotted in terms of hydrostatic stress normalized by the maximum principal
stress. Torsion, tension and bjaxial tension have values of 0, 1/3, and
2/3, respectively. Regions of similar fatigue failure modes are given.
Little data exists for the case of biaxial tension and these lines are
shown as dashed. The map shows that over a wide range of stress states
and strain amplitudes the primary failure mechanism is one of shear crack
growth. The x symbols in the preceding figure that fall to the right of
the central tendency of the test data represent Tlarge compressive mean
stress tests. This type of behavior is expected since the fatigue damage
map shows a transition from shear to tensile dominated behavior at longer
lives. In this failure mode, compressive stresses would retard crack
growth and prolong fatigue lives.
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FATIGUE DAMAGE MAP FOR 304 STAINLESS STEEL

The fatigue damage map for 304 stainless steel is given below. Note
that the region of shear behavior found in Inconel 718 is restricted to a
narrow range in 304 stainless steel. There is a large region of tensile
dominated behavior. It is suggested that a tensile strain based model is
most appropriate here. One such model has been proposed by Smith, et al.
(1970), and has found widespread use in uniaxial fatigue situations.

°max ‘a
Two parameters are considered to be the driving force for fatigue
damage. The maximum principal strain amplitude, €q° and the tensile
stress normal to that plane, Omax®
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LIFE ESTIMATIONS FOR 304 STAINLESS STEEL

Test data for 304 stainless steel from Socie (1987) for both
proportional and nonproportional tests are given below. This material
cyclically hardens under nonproportional loading to a stable stress level
that is nearly double that of a proportional test. The increase in cyclic
stress is very damaging and must be accounted for in the model. For the
same total strain range, uniaxial loading has the largest plastic strain
range and longest life. Nonproportional loading tests have the smallest
plastic strain range, largest stress range and shortest life.
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MULTIAXIAL MEAN STRESS EXAMPLE

Two loading cases that have the same shear damage parameter are given
below. Consider a standard uniaxial test specimen, Case A, tested in zero
to maximum strain cycling. A tensile mean stress o will result. Now
consider a second test, Case B, of a tubular specimen Rested with the same
axial strain range only in completely reversed loading. The magnitude of
the mean stress in the first test is applied as a hoop stress in the
second test. Since the shear damage parameter is the same for both tests
the fatigue lives would be expected to be similar for a material that
fails in a shear mode. Note that the tensile damage parameter for the
second test is much lower since there is no mean stress in the plane
experiencing the largest range of cyclic principal strain. Results for
Inconel 718 are as follows:

Ae/2 o Case A Case B
0.0005 2% 4245 6735
9768 7221

These tests confirm the selection of the damage parameter since the lives
are the same for both tests. The tensile model predicts an increase in
fatique life for Case B that was not observed experimentally.
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BITHERMAL FATIGUE: A SIMPLIFIED ALTERNATIVE
TO THERMOMECHANICAL FATIGUE

Michael J. Verrilli
Fatigue and Fracture Branch
NASA Lewis Research Center

ABSTRACT

A bithermal fatigue test technique has been proposed as a simplified alterna-
tive to the thermomechanical fatigue test. Both the thermomechanical cycle

and the bithermal technique can be used to study nonisothermal fatigue behav-
jor. The difference between the two cycles is that in a conventional thermome-
chanical fatigue cycle the temperature is continuously varied concurrently with
the applied mechanical strains, but in the bithermal fatigue cycle the specimen
is held at zero load during the temperature excursions and all the loads are
applied at the two extreme temperatures of the cycle. Experimentally, the
bithermal fatigue test technique offers advantages such as ease in synchroniz-
ing the temperature and mechanical strain waveforms, in minimizing temperature
gradients in the specimen gauge length, and in reducing and interpreting

data. In addition, the bithermal cycle captures first-order effects of noniso-
thermal fatigue such as the influence of alternate high and low temperatures

on the cyclic stress-strain response characteristics, the effects of thermal
free—expansion mismatch straining between the oxide (or coating) and the sub-
strate, and the possibility of introducing high- and low-temperature deforma-
tion mechanisms within the same cycle. The bithermal technique has been used
to study nonisothermal fatigue behavior of alloys such as single-crystal PWA
1480 (Gayda et al., 1987), single-crystal Rene N4, cast B1900+Hf (Halford

et al., 1988a), and wrought Haynes 188 (Halford et al., 1988b).
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OVERVIEW

BITHERMAL VERSUS TMF

In studying TMF the bithermal cycle is a simplified alternative to the more

conventional continuously varying temperature TMF cycle.
an out-of-phase bithermal cycle and an out-of-phase TMF
phase cycle the tensile mechanical strain is imposed at
In the bithermal cycle the mechanical strain excursions
excursions are decoupled, whereas in the TMF cycle both

ical strains are cycled simultaneously.
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COMPARISON OF TMF AND BITHERMAL FATIGUE DATA

Does the bithermal technique really capture the important effects of a cycle
that combines thermally and mechanically induced strains? For one material
investigated, B1900+Hf, conventional TMF and bithermal results are similar.

As the results show, the bithermal fatigue behavior bounds the TMF results
(Halford et al., 1988b). One would expect that bithermal fatigue would result
in slightly shorter lives than TMF. However, in this case the slightly longer
life of the out-of-phase bithermal fatigue may be attributable to the longer
TMF cycle time.
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WHAT IS TMF?

Many high-temperature components, such as gas turbine blades, experience both
temperatures and mechanical strains that vary with time. Thermal fatigue is
the result of constrained thermal expansion in solids undergoing cyclic temper-
ature gradients. Superimposed mechanical loadings may also be involved. The
cracks in the pictured turbine blades are a result of thermal fatigue. Ther-
momechanical fatigue (TMF) is an experimental simplification of thermal

fatigue. During TMF a material specimen is subjected to both temperatures and

mechanical strains that vary cyclically.

THERMAL FATIGUE
CRACKS IN
TURBINE BLADES
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HOW DOES TMF COMPARE WITH ISOTHERMAL LCF?

For some alloys, such as the nickel-base superalloys single-crystal Rene N&
and polycrystalline B1900+Hf, thermomechanical fatigue has been found to yield
significantly lower fatigue lives than does fatigue at either the minimum or
maximum cycle temperatures. Major design codes have assumed fatigue at the
maximum service temperature to be a conservative design parameter. Conse-
quently most high-temperature, low-cycle fatigue data have been generated
under isothermal conditions. This approach has been assumed to be conserva-
tive, but it is not.
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ORIGINAL PAGE IS
OF POOR QUALITM

TEMPERATURE-STRAIN PHASING EFFECTS DURING TMF

Not only can thermomechanical fatigue life data vary significantly from iso-

thermal data, but variation
strain can also drastically
during TMF. Pictured below
phasing on crack initiation

CRACK TIP AND CRACK
SURFACE OXIDATION

BLUNT CRACK TIP AND
LESS OXIDIZED
SURFACE

in the phasing of the temperature and mechanical
affect the crack initiation and growth mechanisms
is the effect of temperature and mechanical strain
and crack growth in Mar-M 200 (Bill et al., 1984).

IN PHASE

CARBIDE/MATRIX INTERGRANULAR
PULL-AWAY PROPAGATION

OUT OF PHASE

CRACKING WITHIN
CARBIDES TRANSGRANULAR
PROPAGATION
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BITHERMAL VERSUS TMF

In studying TMF the bithermal cycle is a simplified alternmative to the more
conventional continuously varying temperature TMF cycle. Pictured below are

an out-of-phase bithermal cycle and an out-of-phase TMF cycle. In an out-of-
phase cycle the tensile mechanical strain is imposed at the low temperature.

In the bithermal cycle the mechanical strain excursions and the temperature
excursions are decoupled, whereas in the TMF cycle both temperature and mechan-
jcal strains are cycled simultaneously.
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PROS AND CONS OF BITHERMAL CYCLING

The bithermal cycling concept has advantages over TMF cycling that must be bal-
anced against the disadvantages. Both the advantages and the disadvantages are
listed below.

ADVANTAGES OF BITHERMAL CYCLING

e TEMPERATURE AND MECHANICAL STRAIN WAVEFORMS CAN BE EASILY
SYNCHRONIZED.

* THERMAL-FREE EXPANSION STRAINS CAN BE EASILY SUBTRACTED FROM TOTAL
(THERMAL PLUS MECHANICAL) STRAINS.

 NUMBER OF ACTIVE DEFORMATION MECHANISMS CAN BE LIMITED BY PROPER CHOICE
OF TEMPERATURES.

* SAMPLES CAN DEFORM AT HIGH ENOUGH RATES TO PRECLUDE CREEP.

* TECHNIQUE CAPTURES EFFECT OF THERMAL-FREE EXPANSION MISMATCH STRAINING
BETWEEN SUBSTRATE AND COATING OR OXIDE, OR BETWEEN MATRIX AND FIBERS IN
A COMPOSITE.

CD 88-31683

DISADVANTAGES OF BITHERMAL CYCLING

* HOLDING AT ZERO LOAD DURING TEMPERATURE EXCURSIONS CAN ALLOW
UNDESIRABLE RECOVERY PROCESSES TO OCCUR.

* RESULTS CAN BE MISLEADING IF SIMULTANEOUSLY APPLIED MECHANICAL AND
THERMAL STRAINS ARE IMPORTANT TO LIFE.

* THERMAL FREE-EXPANSION MISMATCH STRAINS ARE MORE SEVERE THAN THOSE
OCCURRING DURING A TMF CYCLE.
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COMPARISON OF TMF AND BITHERMAL FATIGUE DATA

Does the bithermal technique really capture the important effects of a cycle
that combines thermally and mechanically induced strains? For one material
investigated, B1900+Hf, conventional TMF and bithermal results are similar.

As the results show, the bithermal fatigue behavior bounds the TMF results
(Halford et al., 1988b). One would expect that bithermal fatigue would result
in slightly shorter lives than TMF. However, in this case the slightly longer
life of the out-of-phase bithermal fatigue may be attributable to the longer
TMF cycle time.
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LIFE PREDICTION MODELING BASED ON STRAINRANGE PARTITIONING

Gary R. Halford
Fatigue and Fracture Branch
NASA Lewis Research Center

ABSTRACT

Strainrange partitioning (SRP) is an integrated low-cycle-fatigue life predic-
tion system. It was created by Manson et al. (1971) specifically for calculat-
ing cyclic crack initiation life under severe high-temperature fatigue
conditions. The system has received exhaustive evaluation by Lewis personnel,
contractors and grantees, and numerous independent industrial and research
organizations around the world. Improvements and additions have been incorpo-
rated continuously, including some within the past year. The key feature of
the SRP system is its recognition of the interacting mechanisms of cyclic
inelastic deformation (i.e., strainrange) that govern cyclic life at high tem-
peratures. Time-dependent, thermally activated deformation processes and
time-independent dislocation glide, and their relative contributions (i.e.,
partitioning) within each strain cycle significantly affect fatigue crack
initiation life. The SRP system is the engineering quantification, at the
macroscopic level, of these microscopic influences on high-temperature fatigue
life. For example, at the macroscopic engineering level, the micromechanisms
of deformation are lumped into two major phenomenological categories, either
creep (and attendant oxidation) or plasticity deformation.

The SRP system bridges the gap between the mechanistic level of understanding
that breeds new and better materials and the phenomenological level wherein
workable engineering life prediction methods are in great demand.

The system has recently been expanded to address engineering fatigue problems
in the low-strain, long-life, nominally elastic regime. This breakthrough,
along with other advances in material behavior and testing technology, has
permitted the system to also encompass low-strain thermomechanical loading
conditions. This is a critical durability problem area for a great number of
engineering structural components subjected to high-temperature service.

Other important refinements of the originally proposed method include proce-
dures for dealing with life-reducing effects of multiaxial loading, ratchet-
ting, mean stresses, nonrepetitive (cumulative damage) loading, and
environmental and long-time exposure. Procedures have also been developed for
partitioning creep and plastic strains and for estimating strainrange-versus-
life relations from tensile and creep-rupture properties.

Each of the important engineering features of the SRP system are discussed and

examples shown of how they help toward predicting high-temperature fatigue life
under practical, although complex, loading conditions.
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OVERVIEW
ORIGINAL BASIS OF SRP

Strainrange partitioning is an integrated system for calculating cyclic crack
initiation life under severe high-temperature fatigue conditions. The key fea-
ture of the SRP system is its recognition of the interacting creep and plastic-
ity mechanisms of cyclic inelastic deformation that govern cyclic life at high
temperatures. Recent developments now permit the system to deal also with
interactions due to effects of high-temperature oxidation. SRP has received
extensive evaluation at Lewis, by contractors and grantees, and at numerous
independent industrial and research organizations around the world. Improve-
ments and additions are constantly being brought into the system.

The basics of SRP as it was first proposed several years ago are known to many
and are illustrated below only for completeness. Since the introduction of
SRP, it has been constantly improved upon in efforts to overcome recognized
deficiencies. Despite its many improvements the basic concept remains valid
and unchanged - the primary variable that governs low-cycle-fatigue life at
high temperatures is the magnitude of the inelastic strainrange and the manner
in which the time-dependent and time-independent inelastic deformations reverse
themselves within a complete cycle. In the extreme there are only four differ-

ent cycles that combine these two strain types in tension and compression load-
ing. Each will potentially have its individual set of deformation mechanisms,

and hence strainrange-versus-life relations, that are generalizations of the
classical Manson-Coffin law of low-cycle fatigue.
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CURRENT MODULES IN SRP SYSTEM

The numerous improvements to the SRP system are listed below and discussed in
the text that follows. Each item is discussed from the standpoints of why the
improvement was needed, how the improvement is implemented, the quantitative
benefits of the improvement, and finally what remains to be done for further
improvement.

The SRP system of life prediction has been created in a modular fashion, and a
module is called upon only if the problem at hand warrants. In applying the
system to the life prediction of a structural component, certain inputs are
required from the structural analysis. These include the stress—-strain-
temperature-time history at the critical crack initiation location. Obviously
the strainrange-versus-life relations for the material must also be known
through measurement or estimation.

To date the SRP system has not been codified for computer application.

« BOUNDING LIFE AND TEMPERATURE INSENSITIVITY

e MULTIAXIAL EFFECTS

e MEAN STRESS EFFECTS

e CREEP AND PLASTIC RATCHETTING

o CUMULATIVE CREEP-FATIGUE DAMAGE

o DUCTILITY-NORMALIZED LIFE RELATIONS

« ENVIRONMENTAL AND LONG-TIME EXPOSURE EFFECTS
« TOTAL STRAINRANGE VERSION

o THERMOMECHANICAL FATIGUE
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POSTER PRESENTATION
BOUNDING LIFE AND TEMPERATURE INSENSITIVITY

Two distinct features of the SRP system that offer significant advantages in
performing engineering creep-fatigue life predictions are (1) the ability to
provide upper and lower bounds on expected cyclic life with only limited analy-
sis, and (2) the insensitivity to temperature of the life relations.

Upper and lower bounds on expected cyclic life for an imposed inelastic strain-
range are given by the example figure on the left (Hirschberg and Halford,
1976). Typically the upper bound is given by the plastic-plastic (PP) life
relation. The lower bound, although frequently being the creep-plastic (CP)
life relation for materials that crack and fail intergranularly, could be the
plastic-creep (PC) or creep-creep (CC) life relation, depending on which is the
most damaging for the material in question.

Temperature insensitivity applies to materials whose creep-fatigue deformation
mechanisms are not altered appreciably over a broad temperature range. This
includes a large number of metallurgically stable engineering alloys whose
creep and tensile ductilities remain reasonably constant over the temperature
range of interest. The advantage to the analyst is in the reduced amount of
temperature-dependent failure data that are needed to document the life equa-
tions. A secondary benefit is obtained from the reduced accuracy required in
identifying the operating temperature. The graph on the right below illus—
trates the temperature insensitivity of strainrange-versus-life relations for
two engineering alloys (Halford et al., 1973).
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MULTIAXIAL EFFECTS

Multiaxial stress and strain states pose several special problems for creep-
fatigue life prediction. Since most creep-fatigue results are generated for
uniaxially loaded specimens, and quite rarely for multiaxial stress-strain
states, the designer must rely on a multiaxial failure theory to relate complex
states of loading to the simple uniaxial state. A relatively simple procedure
for dealing with this problem was proposed by Manson and Halford (1977). The
procedure involves using the von Mises theory for the distortional component of
strain, and a multiaxiality factor for the hydrostatic component of stress.

The greater the tensile hydrostatic state of stress, the lower the potential
ductility, and hence the lower the strainrange-versus-life relations.

In addition, the concepts of "tension' and '"compression' deformation for simple
uniaxial loading must be generalized for multiaxial loadings in which both ten-
sile and compressive stresses appear simultaneously but along different direc-
tions. Since the SRP system recognizes that the damaging nature of a cycle of
inelastic strain at high temperatures depends strongly on whether the strains
are tensile or compressive, the concept of tension and compression must be
retained in any multiaxial creep~fatigue theory to be used by SRP. Procedures
to establish dominant directions for classifying a stress-strain state as being
predominantly tension or compression have been suggested by Manson and Halford
(1976). The procedures apply to proportional multiaxial loading. Rules were
not given for nonproportional loading because of the dearth of data to serve as
a guideline. Limited experimental verification has been achieved to date for
the multiaxial module in the SRP life prediction system.
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MEAN STRESS EFFECTS

Although mean stress effects are usually associated with high-cycle fatigue,
they are almost always present in high-temperature, low-cycle fatigue. In past
years such mean stresses have been ignored. However, research at the Lewis
Research Center has indicated that such stresses cannot always be ignored.
Halford and Nachtigall (1980) developed a criterion for establishing the effec-—
tiveness of mean stresses under isothermal creep-fatigue conditions. The
effectiveness criterion was used in conjunction with the Morrow equation
(Morrow, 1968) for describing the Goodman diagram for mean om and alternat-
ing o0, stresses in fatigue. The equation has been recast in terms of the
life Nfp with and Nf, without mean stress, the slope of the high-cycle-
fatigue curve, and the mean stress ratio (V = mean/alternating). The principal
feature of the criterion is that a transition period exists between high-cycle
fatigue (nominally elastic stress-strain response), where the mean stress
effect is 100 percent, and lower-cycle fatigue, where large inelastic strains
nullify the mean stress effect. The isothermal mean stress equation is shown
below. The constant, 70, was evaluated for the disk alloys, AF2-1DA and
IN-100. Under thermal fatigue conditions, additional considerations must be
examined since mean stresses can develop because of the temperature-dependent
stress-strain characteristics of a material. Halford (1987) suggests a proce-
dure for determining mean stress effectiveness under thermal cycling condi-
tions. The terms are completely defined in the Halford (1987) paper.
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CREEP AND PLASTIC RATCHETTING

The damaging nature of creep or plastic ratchetting strains has received very
little attention by researchers. Theoretical considerations have been nil, and
few well-controlled experiments have been conducted. To provide a first-order
approximation as to the damage imparted by ratchetting strains, an SRP system
module has been adopted (Manson and Halford, 1976) that uses a simple linear
exhaustion-of-ductility concept. Plastic ratchetting strain &p exhausts ten-
sile ductility Dp; creep ratchetting strain 8¢ exhausts creep ductility Dg.
The general inelastic strainrange SRP life equation for reversed strainrange
damage and ratchetting strain damage is shown below. It is based on the inter-
action damage rule.

Fop Foc Fop Frg op  o¢ 1
DAMAGE CYCLE =0 4 S CP 4 PE P, C —
Npp Ncc Nep NPc DP D N

e T ——

CREEP-FATIGUE RATCHETTING
DAMAGE DAMAGE
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CUMULATIVE CREEP-FATIGUE DAMAGE

Cumulative creep-fatigue damage theories are in their infancy compared with
lower temperature fatigue damage models. Creep-fatigue damage experimentation
is also in its formative years. The SRP creep—fatigue life prediction system
uses the recently proposed concept (Manson and Halford, 1983) called strain-
range conversion. As a simple example to illustrate the concept, consider a
repeating series of cycles in which each CP cycle is followed immediately by a
PC cycle. Both strainranges are considered to be '"unbalanced' since the ten-—
sile and compressive strains are different in each case. For alloys such as
austenitic stainless steels, CP strainranges are more damaging, by about an
order of magnitude, than PC strainranges. Thus from the CP strainrange alone
one would expect (based on a simple cycle fraction approach) the block of

CP + PC cycles to result in a block life that is always less than the number of
cycles to failure. However, if this repeating series is shifted by one-half
cycle of loading, it could be represented as a repeating series of CC-PP
cycles. This sequence involves "balanced'" cycles, which are generally less
damaging than unbalanced ones. Since this sequence is actually the same as the
first (with the exception of exactly one-half cycle), the experimental lives of
the two will be the same. However, for the second sequence the 'expected' num-
ber of blocks of loading (based on cycle fraction) should be greater than for
the first sequence, since CC and PP strainrange damages are considerably more
benign. The number of blocks should also be less than the number of CC cycles
to failure, and more importantly, greater than the original number of CP cycles
to failure. The principle of strainrange conversion (SRC) addresses the seem—
ing contradiction in reasoning noted above and provides the rationale for syn-
thesizing any series of SRP strain cycles.

100}— 9 - 8 1(0—3
Nep = 72 74 Nep = 66
sol—  Nec =242 > Npg = 209 50
cvcLes  °
T0
FAIL&JRE, 207 4 EXPERIMENTAL
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Nep = 137 CYCLE FRACTION
100 Npg = 364 =
Od——
0
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DUCTILITY-NORMALIZED LIFE RELATIONS

The four SRP inelastic strainrange-versus-life relations may not be available
for a particular material. Therefore a set of equations has been derived for
estimating them from a knowledge only of a material's tensile plastic ductility
Dp and creep ductility Dg. The equations are known as the ductility-
normalized strainrange partitioning life relations (DN-SRP). The constants in
these equations were determined empirically from a large number of data sets on
a variety of alloy systems (Halford et al., 1977). Note that two equations
exist for estimating the CP strainrange-versus-life relation. The first is for
transcrystalline creep cracking alloys, and the second for intercrystalline
creep cracking alloys.

The life relations estimated by the DN-SRP equations shown below are in agree-
ment with measured life relations to within a factor of approximately 3 in
cyclic life. The greater the ductility, the greater the resistance to failure
by cyclic inelastic deformation. These equations also help to predict whether
the strainrange-versus-life relations are sensitive to test temperature. If
the ductility of an alloy does not change appreciably with temperature, the
strainrange-versus-life relations will probably also be insensitive to test
temperature.

Aepp = 0.50 Dp (Npp) 50

Aepg = 0.25 Dp(Npg) -0.60

Acgg = 0.25 (Dg) 00 ) ~0-60

Acgp = 0.20 (D)% (Ngp) ~%-° (TRANSCRYSTALLINE)
OR

Aegp = 0.10 (D) %89 (Npp) ~-60 (INTERCRYSTALLINE)
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ENVIRONMENTAL AND LONG-TIME EXPOSURE EFFECTS

Procedures based on modification of the inelastic strainrange-versus-life rela-
tions have been proposed by Kalluri (1987) and Kalluri et al. (1987) to account
for oxidation of alloys and other time-dependent degradation mechanisms.
Excellent correlations of experimental results have been obtained with the mod-—
ified life relations. Two forms of time-dependent strainrange-versus-life
relations are available to choose from, depending on the information available
to the user. One set is written in terms of the time of exposure, while the
other is in terms of steady-state creep rates associated with the stresses
encountered in a cycle. For brevity, only the exposure-time relations are
shown here. An example set of equations for CP, PC, and CC inelastic strain-
ranges are shown below for type 316 austenitic stainless steel evaluated at

816 °F. Exposure times are from a few minutes to about 300 hours. These equa-
tions have been highly effective in correlating time-dependent effects as indi-
cated in the figure. Correlation of the experimental results to within a
factor of only 1.5 in cyclic life is considered exceptionally good.

EXPOSURE-TIME-MODIFIED STRAINRANGE-VERSUS-LIFE RELATIONSHIPS

Ngp = 0.113 (Acgp) ~ 163 () ~0-332

Npc = 21.8 (Acpg) -0.696 (te) -0.223
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TOTAL STRAINRANGE VERSION

A workable total strainrange version of strainrange partitioning (TS-SRP) was
first proposed by Halford and Saltsman (1983). Improvements have been made
recently (Saltsman and Halford, 1988a). The TS-SRP module of the SRP life
prediction system was designed to overcome the problems of applying SRP to

the low-strain, long-life, nominally elastic regime of low-to-intermediate
cycle fatigue. In that regime direct application of the classical inelastic
strainrange-versus-cyclic-life relations of SRP is virtually impossible. The
calculation accuracy would be totally unacceptable. In applying the TS-SRP
version an alloy is characterized in much the same manner as for the original
inelastic strainrange version. However, additional information concerning
cyclic stress-strain characteristics is needed along with elastic strainrange-
versus—cyclic-life data. Thus advantage is taken of recent advances made in
the development of unified constitutive equations relating cyclic stresses,
strains, temperature, and time. Using the TS-SRP module allows the life of a
structural component to be calculated from the magnitude of the total strain
response in the structure at the critical crack initiation location. The
strain-time waveshape of the repetitive cycle is used in conjunction with a
unified constitutive model to determine the partitioning of whatever inelastic
strains may be present. The constitutive model along with pre-existing mate-
rial property correlations can be used to identify the equation of the elastic
strainrange-versus-cyclic-life relation that is to be added to the partitioned
inelastic strainrange-versus-life relation to form the total strainrange-
versus—life relation. It is this life relation that is entered by using the
total strainrange determined for the critical location. Never once in the pro-
cesses is it necessary to actually identify the magnitude of the inelastic
strainrange. Example applications of TS-SRP to complex loadings of laboratory
specimens has been provided by Moreno et al. (1985).

Aeg) = B(Nfo)b
Aejp =C’ (Nfo)c
¢ = [SFy e )

Cpp ¢
ij=PP, CC, PC, CP
C’ ¢
Cij
LOG
(STRAINRANGE) ~ Aeg=B(N)b +C’ (Nj)¢
Bpp ¢ ’
B <
Acg),pp
Acel jj
0 LOG (CYCLES TO FAILURE)
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THERMOMECHANICAL FATIGUE

Thermomechanical fatigue problems pose special requirements for life prediction
methods. Efforts to base thermomechanical fatigue life prediction methods on
isothermal creep-fatigue behavior have not always met with success. The reason
is that the thermal history of a thermal fatigue cycle can activate cyclic
deformation and crack initiation mechanisms that simply are not present in iso-
thermal strain cycles. To overcome this difficulty in a manageable manner,
Saltsman and Halford (1988b) proposed that the life relations for the TS—SRP
module be determined from tests involving two distinctly different isothermal
temperatures —- one high and one low. This type of test has been termed the
"bithermal fatigue test' and is reported upon in this conference by

M.J. Verrilli. By using the bithermal test, it is possible to generate
inelastic strainrange-versus-life relations for the unbalanced cycles of CP

(in phase) and PC (out of phase). Almost all thermal and thermomechanical
fatigue cycles are of the unbalanced type (i.e., the tensile and compressive
paths of the cycle are not the same). It is also possible to perform bithermal
PP tests by the proposed technique. Results of applying the TS-SRP module to
thermomechanical fatigue for two engineering alloys, the cast nickel-base
superalloy B1900 and the wrought cobalt-base alloy Haynes 188, are to be
reported upon in June by Halford et al. (1988).

* BITHERMAL STRAINRANGE-VERSUS-LIFE RELATIONS

* UNIFIED CONSTITUTIVE MODELING

* TOTAL STRAINRANGE VERSION (TS-SRP)
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LIFE PREDICTION MODELING BASED ON CYCLIC DAMAGE ACCUMULATION

Richard S. Nelson
United Technologies Corporation
Pratt & Whitney
East Hartford, Connecticut

A high temperature, low cycle fatigue life prediction method has been
developed by Pratt & Whitney under the sponsorship of the Lewis Research
Center's Gas Turbine Engine Hot Section Technology Program (HOST) (Moreno et
al, 1984). This method, Cyclic Damage Accumulation, has been developed for use
in predicting the crack initiation lifetime of gas turbine engine materials,
where initiation has been defined as a 0.030 in. surface length crack. A
principal engineering feature of the CDA method is the minimum data base
required for implementation. Model constants can be evaluated through a few
simple specimen tests such as monotonic loading and rapid cycle fatigue. The
method has been expanded to account for the effects on creep-fatigue life of
complex loadings such as thermomechanical fatigue, hold periods, waveshapes,
mean stresses, multiaxiality, cumulative damage, coatings, and environmental
attack (Nelson et al, 1986). A significant database has been generated on the
behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of
specimen tests under such loading conditions. This information is being used
to refine and extend the CDA life prediction model, which is now nearing
completion. The model is also being verified using additional specimen tests
on wrought INCO 718, and the final version of the model is expected to be
adaptable to most any high-temperature alloy. The model is currently available
in the form of equations and related constants. A proposed contract addition
will make the model available in the near future in the form of a computer
code to potential users.

Work performed under NASA Contract NAS3-23288; Dr. Gary R. Halford, LeRC,
serves as NASA Technical Monitor.
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EXECUTIVE OVERVIEW OF:

LIFE PREDICTION MODELING BASED ON CYCLIC DAMAGE ACCUMULATION (CDA)

Modern applications of high strength materials often involve high homologous
temperatures (greater than 0.5) combined with complex time-varying stresses and
strains. The figure shown here depicts typical strain and temperature histories
for such a location and shows the resulting damage to the structure after
application of a sufficient number of these cycles. Clearly, this situation
gives rise to many difficulties when life predictions are required for such
service conditions, since several different damage mechanisms (such as creep,
fatigue, and oxidation) may be activated simultaneously. Many researchers have
devoted large portions of their careers to the solution of such problems and
have developed several useful techniques for high temperature life prediction
in the presence of creep-fatigue-environment interactions (Halford, 1986;
Cailletaud et al, 1983). In order to build on their work and to enhance hot
section durability, the current effort was sponsored by the Lewis Research
Center's Gas Turbine Engine Hot Section Technology Program (HOST). The intent
of this work has been to examine fundamental approaches to high temperature
crack initiation life prediction, identify modeling strategies, and develop a
practical model which can produce accurate life predictions for a wide range of
component relevant conditions (Moreno et al, 1984). Though originally developed
for aerospace use, the work is relevant to most high temperature applications
of current and future isotropic alloys.

THE EFFECTS OF COMPLEX STRAIN AND TEMPERATURE HISTORIES
MUST BE DETERMINED FOR ACCURATE LIFE PREDICTIONS
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EXECUTIVE OVERVIEW OF:

LIFE PREDICTION MODELING BASED ON CYCLIC DAMAGE ACCUMULATION (CDA)

The work under the HOST contract began with a base program during which
existing life prediction approaches were examined in detail. Monotonic tests
and continuously cycled strain controlled isothermal fatigue tests of cast
B1900+Hf specimens were performed to provide baseline data for comparison.
Desirable features from several of these methods were identified, and the
result was a new approach for life prediction called Cyclic Damage Accumulation
(CDA). This is being expanded during the option portion of the program to
account for the effects of thermomechanical fatigue, multiaxiality, cumulative
damage, environment, coatings, and mean stresses (Nelson et al, 1986). The
B1900+Hf specimen database has been greatly expanded during this work to
provide clear data regarding material behavior under such complex conditions.
Finally, the CDA model is being refined and modified to account for the
behavior of other types of high temperature engineering alloys, wrought INCO
718 being used as the alternate model material for this work. It should be
noted that these databases will, when completed, comprise the results of
approximately 350 specimen tests of B1900+Hf and 110 specimen tests of INCO
718, By themselves, they are therefore of great interest to any researcher in
the field of high temperature life prediction. A proposed extension to the
contract would also provide software of immediate value to those desiring to
perform high temperature life predictions using the CDA method.

HOST ISOTROPIC CREEP-FATIGUE CONTRACT HAS PRODUCED
EXTENSIVE DATABASES AND PRACTICAL LIFE MODEL
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CUMULATIVE DAMAGE TESTS DEMONSTRATED THE
USEFULNESS OF THE BASIC CDA APPROACH

One of the important features of the Cyclic Damage Accumulation (CDA) Life
prediction model developed during the base portion of this contract is the use
of a ductility variable which represents the fatigue capability of the material
as a function of the loading history. It was observed that the dislocation
structure produced during the primary phase of a creep test was very similar to
that which developed during fatigue. The amount of total accumulated primary
creep was found to be a function of both temperature and maximum applied
stress. The CDA life prediction model therefore uses primary creep ductility as
a measure of fatigue capability, and the damage accumulation rates for the
various temperatures are calculated using this concept.

Cumulative damage tests were completed as part of the option program,
including block tests (strain ratio, temperature, and hold time), sequenced
tests (strain range and rate), and interrupted tests (prior creep and
interspersed exposure time). The block strain ratio results are, shown below,
where the level of prior loading and its duration are seen to have pronounced
effects on the life of subsequent block loading. This effect is easily captured
using the CDA concept of primary creep ductility, since this variable will
depend on the prior loading history. The cumulative damage tests also showed
the need to incorporate a non-linear damage accumulation function to predict
sequence effects correctly.
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TMF LIFE PREDICTION MUST ACCOUNT FOR STRONG
INFLUENCES SUCH AS COATINGS AND CYCLE PATH

Prediction of initiation life under conditions of thermomechanical fatigue
is one of most important practical applications of any advanced creep-fatigue
life model. Such conditions of simultaneously varying strain and temperature
are typical of what is experienced by many components of modern turbomachinery
and powerplants. To complicate matters further, the alloys used in such
applications are often coated to prevent oxidation or other environmental
attack. Such conditions were simulated during the option portion of this
program using many types of strain-temperature cycle paths, including in-phase,
out-of-phase, "dogleg" (non-isothermal holds), and elliptical cycles. The
B1900+Hf specimens were run in one of three conditions: uncoated, overlay
coated, or diffusion aluminide coated. The INCO 718 TMF specimens were run
using similar strain-temperature cycles and were all uncoated. The results
shown below are typical of the effects produced by such variables, indicating
that successful life models must be able to account for these effects. The
modifications to the CDA model currently in progress will enable it to accept
completely arbitrary histories of stress-strain-temperature and thereby make
accurate TMF life predictions. A constitutive and life model for coatings from
a companion HOST contract will also be incorporated (Swanson et al, 1987).
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MULTIAXIAL EFFECTS HAVE BEEN INVESTIGATED
AND ARE BEING INCORPORATED INTO CDA MODEL

Certain areas of high temperature components, such as blade/platform
intersections and disk webs, may be subject to loading conditions which have a
high degree of multiaxiality. Also, three-dimensional analysis programs often
express calculated stress and strain tensors in coordinate systems which are
not aligned with the local component loads. In both of these cases, some method
is needed to determine the invariant parameter{(s) which best characterize the
initiation life under such conditions. As part of the option program, both
alloys were tested under strain controlled multiaxial conditions at elevated
temperatures by Prof. Eric Jordan at the University of Connecticut. Part of the
data generated for B1900+Hf are shown in the figure below, where it can be seen
that maximum normal strain range does a reasonably good job of correlating the
data at 871°C (1600°F). Preliminary indications are that a modified maximum
shear strain range parameter will provide the best correlation for the INCO 718
multiaxial data. A preprocessor module currently being developed will allow the
CDA model to incorporate the flexibility needed to adjust to such differences
in modern engineering alloys.
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MEAN STRESS EFFECTS CAN BE NON-LINEAR
FOR BOTH ISOTHERMAL AND TMF CONDITIONS

It has been known for many years that a superimposed mean stress can have
pronounced effect on fatigue life. Such conditions occur in both high and
moderate temperature applications and can have different effects, depending on
what types of damage modes are active at the temperatures involved. Isothermal
experiments during which both the strain range and the mean stress are
independently controlled are underway at the University of Rhode Island under
the direction of Prof. Hamouda Ghonem. The temperatures chosen for these tests
will span a range of active damage mechanisms for both B1900+Hf and INCO 718.
Thermomechanical load controlled experiments have been completed on both alloys
at Pratt & Whitney, and the figures shown below present the results of three of
these tests. Clearly, the influence of mean stress cannot be predicted using a
linear damage interaction rule combined with lives predicted for pure creep or
TMF under similar conditions. The CDA model is being refined to account for
this type of effect as part of its basic formulation. The inherent capability
of the primary creep ductility variable will provide the basis for this work.
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ADVANCED VISCOPLASTIC CONSTITUTIVE MODELS ARE
AVAILABLE FROM A COMPANION HOST CONTRACT

Advanced life prediction models such as CDA rely heavily on accurate
knowledge of the local stress-strain conditions at the point of interest. With
specimen data, these variables can be measured and used for direct correlation
of the life results. For example, the figure shown below shows the measured
stress response of B1900+Hf to various TMF cycles. The obvious differences in
maximum stress history will significantly affect the crack initiation life and
therefore must be well known. However, for design and analysis of actual
components, the stress-strain behavior will generally have to be predicted
using some kind of analytical method. For the base alloy from this program, two
advanced viscoplastic constitutive models have been produced by a companion
HOST contract (Chan et al, 1986). The basic methods used for these models can
be expanded to predict the behavior of most alloys for which CDA life model
constants would be desired, thus providing the framework for a complete
analysis system for high temperature life prediction.
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CDA LIFE PREDICTION MODEL IS BASED ON
INTEGRATION OF DAMAGE RATES FOR VARIOUS MODES

The fundamental equations of the CDA life prediction model are based on the
integration of damage rates for various mechanisms for a particular material.
For example, shown below are the two basic integrals which must be evaluated
for the transgranular and intergranular damage modes for B1900+Hf. Note the
incorporation of the primary creep ductility term and the non-linear damage
accumulation function, both of which have been previously described. It is
important also to note that, wherever possible, the actual calculations are
based on ratios of current parameters relative to those from simple tests (the
"reference" values shown in the equations with "R" subscripts). This enables
the CDA life constants to be determined from low cost, simple tests rather than
expensive, complex tests. Other damage modes (such as environmental) will be
incorporated using the same methodology, including interaction with current
modes through appropriate factors and equations. The final form of the CDA
equations is still under development but will continue to include the same
features. All modes for a given material will be evaluated simultaneously on a
cycle-by-cycle basis using efficient adaptive techniques.

¢ Transgranular damage mode:

1 L[ e ]

¢ Intergranular damage mode:

_ Ni dt fox
1= ( $ T (a"_,T)> <'fo_xa'> dN

o] .
cycle i

¢ Constants derived from simple tests
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PROGRAM IS MODULAR TO PROVIDE MAXIMUM
EFFICIENCY AND FLEXIBILITY FOR EXPANSION

From the very beginning of this contract, it was decided that flexibility
would be very important for high temperature life prediction. It was therefore
decided to keep the method to be developed as modular as possible so that only
those aspects which were relevant to the particular application at hand would
need to be exercised. This also permits modification or upgrading of selected
portions of the method as new techniques become available. The CDA life model
software currently under development is designed to reflect this philosophy and
therefore incorporates several features worthy of mention. As shown in the
figure below, the input will be an ASCII file which can be created as required
from whatever source of information is available. Similarly, the output will be
an ASCII file containing the actual life prediction(s) plus (optionally) the
evolution of damage variables versus cycles. This file input/output system will
permit the use of any of the many available software packages for editing,
plotting, and display of these results. The internal structure will make use of
generic variables and arrays which can be defined as needed by the particular
damage mode being evaluated. The whole code will be written in FORTRAN-77 for
use on mainframes, minis, or micros, and will be heavily commented for ease of
modification by end users.

Data sources Input file “Calculation engine” Output file
SPECIMEN TEST DATA ~| STRESS CDA LIFE PREDICTION FINAL
STRAIN ALGORITHMS PREDICTED
ELASTIC ANALYSIS TEMP AND LIFE
PLUS vs EQUATIONS
SIMPLIFIED RULES TIME =  pLUS
FOR INELASTICITY INCLUDING
FOR LIBRARY OF CDA CONSTANTS DAMAGE
FULL INELASTIC FOR vs
ANALYSIS METHODS N CYCLES B1900+Hf AND INCO 718 CYCLES

3-254



PRELIMINARY TMF MODEL SHOWS GOOD CORRELATION
AND POTENTIAL FOR PRACTICAL APPLICATION

A preliminary version of the CDA life prediction model was used to correlate
the B1900+Hf TMF data for both coated and uncoated specimens. The figures below
show that these predicted lives mostly fall within a factor of 2 relative to
the actual life data. The model used for these correlations exercised only the
basic transgranular damage mode, and work is still continuing to improve the
correlation. Also, these figures indicate the potential of the method for
improved design predictions after all damage modes are activated and integrated

into the final system.

B1900+Hf TMF data
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CYCLIC DAMAGE ACCUMULATION MODEL WILL PRODUCE
ACCURATE HIGH TEMPERATURE LIFE PREDICTIONS

In summary, it should be clear that this HOST contract has produced
information which is valuable to any who wish to make life predictions for
structures subjected to high temperature, complex loading conditions,
especially those situations which can cause creep-fatigue-environment
interactions. The large, self-consistent databases for both cast B1900+Hf and
wrought INCO 718 are by themselves of great value to any who wish to understand
the effects of thermomechanical fatigue, cumulative damage, multiaxiality,
environment, coatings, and mean stresses. The test matrices have been designed
to show how the multiple damage mechanisms which are characteristic of this
regime can occur and interact in actual component-relevant conditions. The
development of the Cyclic Damage Accumulation life prediction model is well
along and will result in a practical, accurate life model with flexibility and
efficiency for many types of engineering alloys. The method is also
complemented by the development of advanced viscoplastic constitutive models
for stress-strain predictions for the base alloy. Finally, the availability of
the CDA model as a software package will facilitate its use and further
enhancement by the engineering community.

¢ Broad spectrum of B1900 + Hf testing is nearly complete,
providing consistent database for model development

¢ INCO 718 testing is underway to establish high
temperature database for forged material

¢ Test results are showing how multiple damage modes
occur and interact under complex loading conditions

® Model evaluation is being pursued for several types
of loadings and will result in practical, accurate life
prediction method
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FATIGUE DAMAGE MODELING FOR COATED SINGLE CRYSTAL SUPERALLOYS*

David M. Nissley
United Technologies Corporation
Pratt & Whitney
East Hartford, Connecticut

A high temperature, low-cycle fatigue life prediction method for coated single
crystal nickel-base superalloys is being developed under the sponsorship of the
Lewis Research Center's Gas Turbine Engine Hot Section Technology Program (HOST)
by the Pratt & Whitney Division of United Technologies. The method is being
developed for use in predicting the crack initiation (.010" depth in single
crystal) life of coated single crystal turbine airfoils. Although the models are
being developed using coated single crystal PWA 1480, they should be readily
adaptable to other coated nickel-base single crystal materials. The coatings
choosen for this effort were of two generic types: 1) a low pressure plasma
sprayed NiCoCrAlY overlay, designated PWA 286, and 2) an aluminide diffusion,
designated PWA 273 (Swanson et al., 1987).

In order to predict the useful crack initiation life of airfoils, the
constitutive and failure behavior of the coating/substrate combination must be
taken into account. Coatings alter the airfoil surface microstructure and are a
primary source from which cracks originate (Swanson et al., 1987). The adopted
life prediction approach addresses this complexity by separating the coating and
single crystal crack initiation regimes. This provides a flexible means for
using different life model formulations for the coating and single crystal
materials. At present, the overlay coating constitutive and life models and
single crystal constitutive models are available in equation form (Halford et
al., 1988). Diffusion aluminide coating constitutive and life models and the
single crystal life model are currently being developed.

At the completion of this program, all constitutive and life model formulations
will be available in equation form and as software. The software will use the

MARC general purpose finite element code to drive the constitutive models and
calculate life parameters.

*Work performed under NASA contract NAS3-23939; Gary R. Halford serves as NASA
technical monitor. .
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OVERVIEW
FATIGUE DAMAGE MODELING FOR COATED SINGLE CRYSTAL SUPERALLOYS

Cracking of coated single crystal airfoils is largely due to the severe thermal
gradients introduced during engine transient operation. In general, oxidation/
corrosion resistant coatings initiate cracks which eventually penetrate into the
single crystal material thereby limiting the airfoil's useful fatigue life. This
cracking behavior is modeled by considering the coating and substrate as a
composite structure comprised of two materials with different constitutive and
fatigue life behavior (Swanson et al., 19873 Halford et al., 1988). The effect
of single crystal orientation on the constitutive and fatigue life behavior of
the composite structure is included in the developed models.

NATURE OF PROBLEM

Cracking caused by thermal straining

<001>
Crack

origin

<100>

/<o

0

/ Anisotropic

\/ substrate

Isotropic
coating
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POSTER PRESENTATION
NATURE OF THE PROBLEM

This program addresses the complex cracking problem associated with coated
nickel-base single crystal airfoils. It recognizes that cracking is not
restricted to chordwise cracks (i.e., normal to centrifugal stress in blades),
but may also occur in the spanwise direction. Since the coating is a primary
crack initiation site, coating constitutive and life models must be developed as
well as those for the single crystal material. Airfoil life prediction is
further complicated by the fact that the fatigue life of single crystal material
depends on its crystallographic orientation. All of these factors are

jnvestigated in this program.

Crack
origin

Anisotropic Isotropic
substrate coating

L=
S
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MICROSTRUCTURE OF OVERLAY AND ALUMINIDE COATINGS

Two generic coating types are being investigated: 1) PWA 286 overlay NiCoCrAlY
and 2) PWA 273 aluminide. The overlay coating is applied by a low pressure
plasma spray technique which produces a small diffusion zone layer and a distinct
substrate/coating interface. By contrast, aluminide coatings produce a much
larger diffusion zone and less distinct substrate/coating interface. The PWA 273
coating is applied by pack cementation. Both coating microstructures indicate
that the coatings may be treated as isotropic for the purposes of constitutive
modeling (Swanson et al., 1987). Overlay coating properties do not vary widely
through the thickness so that tests of '"stand-alone' coating material are useful
for obtaining constitutive behavior. However, because aluminide coating
properties are largely influenced by the substrate onto which it is applied,
testing of a "stand-alone' aluminide coating is not possible. Unique tests
useful for aluminide coating constitutive model development are described by
Swanson et al. (1987).

Overlay coating, Pack aluminide diffusion
PWA 286 coating, PWA 273

ORIGINAL PAGE IS
DE POOR QUALITY
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OVERLAY COATING LIFE MODEL COLLAPSES DATA WITHIN 2.5X

A modified tensile hysteretic energy life model was developed for the PWA 286
overlay coating and is reported by Halford et al. (1988). Model constants were
determined from isothermal tests conducted at 427, 760, 927, and 1038C (800,
1400, 1700, and 1900F). Coating hysteresis loops were predicted using the PWA
286 overlay coating constitutive model incorporated into a two-bar mechanism.
Preliminary results indicst that the model collapses a large body of isothermal
and thermomechanical fatigue (IMF) life data within a factor of about 2.5.
Generally, the worst predicted lives were limited to 1149C (2100F) max.
temperature TMF tests. Prediction of these tests should improve when 1149C
(2100F) isothermal tests are included in the data set used to determine model
constants.

140
eecooe Data
Prediction
100 |- -
60
Stress
(ksi)
20—
800-1600°F
Or +.4% 1 cpm
~-20 Out-of-phase
-60 1 1 1 | | N
-6 -4 -2 0 2 4 .6

Strain (%)
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COMPLEX FAILURE MODES ARE OBSERVED FROM COATED SPECIMENS

The figure below schematically represents where coated PWA 1480 crack initiation
occurs during isothermal fatigue. For the low elastic modulus orientation,
<00l>, the coating typically cracks first, but for the high modulus orientatioms,
in this case <1l11>, the PWA 1480 may initiate cracks at defects, typically
porosity. This represents the observed cracking at just one temperature. When
the temperature is changed, the life lines tend to shift relative to one

another. For example, only coating initiated cracks were observed during

out-of -phase thermomechanical fatigue of both <001> and <lll> orientationms.

el Nty ////////

<111>

Life (cycles)
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ADOPTED LIFE APPROACH REFLECTS OBSERVED CRACKING MODES

The observed specimen crack initiation modes dictated the life approach adopted
for coated single crystal life prediction. The total life is considered as a
sum of: 1) coating cracking, single crystal cracking (from coating cracks), and
single crystal crack propagation, or 2) single crystal cracking due to discrete
slip, oxidation effects, or defects (primarily porosity) and single crystal
crack propagation. The obvious advantage in this approach is that life models
can be individually tailored to the properties of each specific material (i.e.,
coating or substrate).

Nf=Nc+Nsc+Nsp - -
whichever is smaller

or Ny = N, + Nsp
where: N, = Cycles to initiate a crack through the coating.
N, = Cycles for coating crack to penetrate a
small distance (.010”) into the substrate.
N_, = Cycles to initiate substrate crack.
Nsp = Cycles to propagate substrate crack to failure.
N, = Total cycles to failure.
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SIMPLE STRUCTURAL MODEL FOR PREDICTING COATING/SUBSTRATE BEHAVIOR

Since coating stress/strain behavior can not be measured during specimen tests,
an analysis is used to obtain the non-linear coating response for life
prediction. To facilitate this effort, a one-dimensional two-bar mechanism
analysis is employed. As an example, the predicted response of overlay coated
PWA 1480 <001> during an out-of-phase thermomechanical test is shown in the
figure. The overlay coating response is highly non-linear relative to the
single crystal PWA 1480 which remains nearly elastic. The coating mechanical
strain range is higher than the PWA 1480 due to differences in the coefficient
of thermal expansion between the two materials which is included in the two-bar
model.

Pt}

P.+Pg = P(t) ¢ (%]
¢ = bs 0.4 1900
2’ : -0.2 800 T(F)
Coating\.;_ _ |~ Substrate
: 964.6 MPa _ 140 ksi

L 7
/g

/’" £ —PWA 1480< 001>

Two bar mechanism

Overlay coating

\ \ Calculated
\ \\ stress

(PWA 286) i . .
-~ }~” Mechanical strain (%)
0.6 =202+ 02 04
2
-5511 -80
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OVERLAY COATING CONSTITUTIVE MODEL PREDICTION OF TMF BEHAVIOR

Wwalker's isotropic formulation (Walker, 1981) was chosen as the overlay coating
constitutive model based on its ability to reproduce isothermal and
thermomechanical hysteresis loop data. Shown in the figure is a comparison of
the model prediction to an out-of-phase thermomechanical test cycle. The model
captures the overall shape of the hysteresis loop, but overpredicts the maximum
and minimum stresses. It is felt that the model predicts the coating behavior
to the extcnt that current state-of-the—art viscoplastic models are capable.
Baseline tests from which all model constants were determined consisted of
cyclic stress relaxation tests which covered a temperature range from 427C to
1093C (800F to 2000F) (Swanson et al., 1987). MARC finite element user
subroutine 'HYPELA' has been developed for the overlay coating to permit
non-linear analysis of coated specimens and components.

10000

LEGEND

O ISOTHERMAL LCF
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1000

™F
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100 1 —
100 1000 10000 100000
ACTUAL LIFE ~ CYCLES

¢ Qverlay coating response calculated from 2-bar analysis
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UNIAXIAL TMF INTRODUCES SIGNIFICANT BIAXTAL COATING LOADS

Ultimately, coated TMF life prediction must consider the biaxial coating loads
introduced by the thermal growth mismatch between the coating and substrate. For
example, MARC finite element analysis of a simple two element structure was
performed to obtain the coating hysteretic response to a fully-reversed,
uniaxial, out-of-phase TMF test conducted at 427-1038C (800-1900F), 1 cpm, and
.3% mechanical strain range. Predicted hysteresis loops from the finite element
and one-dimensional analyses are presented in the figure. The coating tensile
hysteretic energy was obtained from the finite element analysis by the method
proposed by Garud (1981). For this test condition, biaxial coating loads
increased the tensile energy 70% which reduced the predicted life by a factor of
about 1.5. Before the overlay coating life model is completed, all TMF test
cycles must be analyzed in this manner.
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PRELIMINARY PWA 1480 LIFE MODEL CORRELATIONS

Initial single crystal life correlations have been completed. The two models
chosen for futher development are: an elastic modulus modified strain range and
the modified hysteretic energy approach developed by DeLuca and Cowles (1985).
The strain range model is attractive because mechanical strains are readily
available to the turbine airfoil designer. However, it does not currently have
the capability to determine cyclic strain or strain-temperature history effects.
For example, two tensile strain dwell cycles, which are denoted in the figure by
the subscript "T'", were incorrectly correlated to have identical life with that
of a non-dwell cycle. This is a serious limitation since TMF lives are highly
strain-temperature history dependent (Swanson et al., 1987). On the other hand,
the modified hysteretic energy model includes parameters which enable correction
for strain or strain-temperature effects. This model correctly correlated the
two dwell cycles from the non-dwell cycle. Unfortunately, hysteretic energy
models inherantly use inelastic strain as one of their correlating parameters
and, as noted previously, the single crystal TMF loops are virually elastic in
nature. Therefore, although both models have advantageous aspects, they require
additional refinements for TMF life prediction.

Aluminide coated specimens at 927°C (1700°F)

Modified strain range Modified hysteretic energy
PWA 1480
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LIFE AND RELIABILITY OF ROTATING DISKS

Erwin V. Zaretsky, Todd E. Smith,* and Richard August*
Structures Division
NASA Lewis Research Center

INTRODUCTION

In aerospace applications, an engineer must be especially cognizant of size and
weight constraints which affect design decisions. Although designing at or
below the material fatigue limit may be desirable in most industrial applica-
tions, in aerospace applications it is almost mandatory to design certain com-
ponents for a finite life at an acceptable probability of survival. Zaretsky
(1987) outlined such a methodology based in part on the work of W. Weibull
(1939, 1951) and G. Lundberg and A. Palmgren (1947a, 1947b, 1952). Zaretsky's
method (1987) is similar in approach to that of Ioannides and Harris (1985).

Mahorter et al. (1985) discuss the accuracy of life prediction techniques for
military turbine engine components such as compressor and turbine disks. The
development of a 0.794 mm (0.03 in.) crack in any of the critical areas of a
disk, such as bolt holes, bore, dovetail, etc., is considered the end of its
low cycle fatigue (LCF) life. This is the life, Lo, 1, at which the military
requires a 99.9 percent probability of survival or a 0.1 percent failure rate.
Disk retirement policy requires that the disks be removed from service or
reworked at their Ly, life. The statistically predicted lives for bolt-hole
cracks were shorter than the deterministically predicted values. These results
imply that a deterministic approach to life prediction is not necessarily con-
servative, and that a probabilistic approach is viable in light of all the
statistical variations in the design parameters.

In view of the aforementioned, it is the objective of this work to (a) apply
the method of Zaretsky (1987) to statistically predict the life of a generic
solid disk with and without bolt holes, (b) determine the effect of disk design
variables, thermal loads, and speed on relative life, and (c) develop a gener-—
alized equation for determining disk life by incorporating only these
variables.

*Sverdrup Technology, Inc., Lewis Research Center Group. Work performed
on-site at NASA Lewis under NASA Contract NAS3-24105.
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OVERVIEW
FINITE ELEMENT MODEL

Parametric analytical studies were conducted to investigate the effect of
varying physical dimensions and speed on the relative lives of a generic solid
disk. The physical model of the solid disk requires that the structure be
divided into a series of components (elements). This is most easily done by
considering the disk as a collection of concentric rings. The disk was modeled
with 10 rings of equal radial increment for the parametric values of disk diam-
eter studied.
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GOVERNING EQUATIONS

The following equation for the 10-percent life of a uniform solid rotating
disk is obtained:

K_\20 Kt 14.3/,\0.606(K_\0.52
o= ) G e

Introducing the concept of a Dynamic Speed Capacity Ny, which is defined by
Zaretsky (1987) as the speed that would produce a theoretical life of one

million stress cycles,

K. \20 /K 14.3 0.606/K_\0.52 1/14.3
~6|[p\™ [t 9 o1
NO = A0 [(D ) (t ) KN <C> (AT) ]eXP(KLtL)

and for any speed N for a given disk geometry.

N \14.3
Lio= (EQ) x10°
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SYMBOLS
A material constant, stress cycles
c stress-life exponent
D disk diameter, m (in.)
E material Young's modulus, N/m2 (psi)
e Weibull slope or modules

Kp proportionality constant, m (in.)

K;, proportionality constant, m2/N (psi~l)
Ky  proportionality constant, rpm

Kr proportionality constant, K (°F)

K¢ proportionality constant, m (in.)

L life, stress cycles

Lg system life, stress cycles

Lip ten-percent life, life at which 90 percent of a population survive,
stress cycles

N speed, rpm

No dynamic speed capacity, rpm

T temperature, K (°F)

t disk thickness, m (in.)

v stress volume, m3 (in.3)

AT  temperature difference, K (°F)
T shear stress, N/m2 (psi)

11 fatigue endurance limit, N/m2 (psi)
Subscripts:

i ith component, and denotes inner disk radius

o reference point, and denotes outer disk radius
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POSTER PRESENTATION:
EFFECT OF DISK DIAMETER

The effect of disk diameter on life for a speed of 9000 rpm and a stress-life
exponent, ¢, of 9 is shown. As the disk diameter is increased, both the stress
and the stress volume increase and life will decrease. The effect of Weibull
slope is negligible. D 1is the disk diameter, Kp 1is a constant equal to

0.61 m (24.0 in.), and Lip is the life at a 90-percent probability of sur-
vival (or the life where 10 percent of the disks have failed).
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EFFECT OF DISK THICKNESS

The effect of disk thickness on the Ljo life is shown. Because the stressed
volume is increased, life will decrease. The effect of Weibull slope is negli-
gible. t is the disk thickness, and K¢ is a constant equal to 0.0254 m

(1.0 in.).
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EFFECT OF SPEED
As disk speed is increased, stresses within the disk will increase. These
stress increases will cause a decrease in life. The effect of disk rotational

speed on Ljg life is shown. N 1is the disk speed and Ky 1is a speed
constant equal to 9000 rpm.
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EFFECT OF STRESS-LIFE EXPONENT

For each stressed elemental.volume within the body of the disk, the life was
determined by using an inverse stress-life relation. Not all materials will
exhibit the same stress-life relation. The stress—life exponent is generally
determined experimentally. For the previous calculations, a stress-life exXpo-
nent of 9 was assumed. Using varying values of ¢ with a reference disk, the
effect of the stress-life exponent on the Liop 1life of the disk was deter-
mined. These results are shown.
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A concept first espoused by I

EFFECT OF ENDURANCE LIMIT

oannides and Harris (1985) was the application of

a fatigue limit in the determination of the lives of the elemental stressed

volumes.

Basically, the concept is that where the shearing stress is equal to

or less than the value determined or assumed for the fatigue limit, the proba-
bility of survival for that elemental stressed volume is 100 percent. The
results of assuming varying values of a fatigue limit for the shearing stress

is shown where Tj,

failure is expected to occur and Kg,

(2.77x10~% psi~1).

NORMALIZED
RELATIVE
DISK LIFE,

Lo

100 000

10 000

1000

100

10

LR R L

is the fatigue endurance limit at or below which stress no

is equal to 4.02x10-8 m2/N

|

0 20 40 60 80
FATIGUE ENDURANCE LIMIT, N/mM2

I | I N B I

100x10°

|

0 2 4 6 8 10 12
FATIGUE ENDURANCE LIMIT. psi

3-279

14x10°
CD-88-32852



EFFECT OF TEMPERATURE GRADIENTS

The effect of a radial temperature difference upon the overall disk relative
life was determined by considering the thermal stresses superimposed upon the
centrifugal disk stresses due to disk rotation. A steady-state radial tempera-
ture distribution was applied to a disk with a very small central hole. A disk
with a small central hole was considered because this configuration relieved a
mathematical singularity which occurs for isothermal boundary conditions upon a
solid disk. The effect of various uniform radial linear temperature gradients
on disk relative life is shown. AT is the total radial temperature difference
and Kr is a constant equal to 0.56 K when AT is in Kelvin or 1F when

AT is in Fahrenheit, and where AT is equal to or greater than K.

2
K 0.52
- AT
- WEIBULL SLOPE,
- e
NORMALIZED g [
RELATIVE B ~2. 3.57
DISK LIFE,
L1o
A=
.05 —
I I I I I
0 40 80 120 160 200
RADIAL TEMPERATURE DIFFERENCE, AT. K
I I | | I
0 80 160 240 320

RADIAL TEMPERATURE DIFFERENCE. AT, OF

CD-88-32857

3-280




EFFECT OF HOLE SIZE

As discussed by Mahorter et al. (1985), tie-bolt holes will be the critical
location for failure in a disk. Using the finite element model, the effect on
disk life of bolt-hole size, location, and number was determined. The effect
of bolt diameter on disk fatigue life is shown. It would appear that at bolt
holes having a diameter of less than 10.2 mm (0.4 in.), the effect of hole size
is nominal. At bolt holes larger in diameter, the effect is most significant.
This analysis would suggest that the bolt holes in a disk should be smaller

but more numerous.
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EFFECT OF HOLE NUMBER

The effect of increasing the number of bolt holes is shown. Increasing the
number of holes and keeping the hole diameter less that 10.2 mm (0.4 in.)
appear to have less of an effect on life than having fewer holes with a larger
diameter.
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EFFECT OF HOLE LOCATION

The effect of hole location in the disk is shown as a percent of the disk
radius measured from the axis of rotation. The results indicate a general
trend of increasing life as the holes are moved radially outward. This would
not be unexpected because stresses decrease with increasing distance from the
center. The trend is not totally convincing, however, since there is an inver-—
sion of the trend at a location between 40 and 50 percent of the disk radius;
that is, life decreases and then begins to increase again. It cannot be deter-
mined with reasonable certainty that this is correct or whether the finite ele-—
ment mesh size was properly selected for these calculations. Further analysis
is required.. However, it can be reasonably concluded that the bolt holes
should be placed as far from the center of the disk as is practical.
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LARGE-SCALE WIND TURBINE STRUCTURES

David A. Spera
Advanced Concepts and Applications Branch
NASA Lewis Research Center

INTRODUCTION

The purpose of this presentation is to show how structural technology has been
applied in the design of modern wind turbines, which have recently been brought
to an advanced stage of development as sources of renewable power. Wind tur-
bine structures present many difficult problems because they are (1) relatively
slender and flexible (2) subject to vibration and aeroelastic instabilities

(3) acted upon by loads which are often nondeterministic (4) operated continu-
ously with little maintenance in all weather, and (5) dominated by life-cycle
cost considerations. Progress in horizontal-axis wind turbine (HAWT) develop-
ment has been paced by progress in our understanding of structural loads,
modeling of structural dynamic responses, and designing of innovative struc-
tural elements.

During the past 15 years, the NASA Lewis Research Center has developed a series
of large HAWT's under the sponsorship of the U. S. Department of Energy and

the Department of the Interior. This work has resulted in the design, con-
struction, and testing of 13 HAWT's, with supporting research in aerodynamics,
structural dynamics, electrical generating systems, and automatic controls.
This has culminated in the recent completion of the world's largest operating
wind turbine, the 3.2-MW Mod-5B power plant installed on the island of Oahu,
Hawaii.

Some of the applications of structures technology to wind turbines will be
illustrated by referring to the Mod-5B design. First, a video overview will
be presented to provide familiarization with the Mod-5B project and the impor-
tant components of the wind turbine system. Next, the structural requirements
for large-scale wind turbines will be discussed, emphasizing the difficult
fatigue-life requirements. Finally, the procedures used to design the struc-—
ture will be presented, including the use of the fracture-mechanics approach
for determining allowable fatigue stresses.
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ORIGINAL PAGE IS
OF POOR QUALITY.
MOD-5B 3.2-MW WIND TURBINE

The Mod-5B is a third-generation horizontal-axis wind turbine that has evolved
from a succession of federally-sponsored wind turbine research projects. This
wind turbine, located in Hawaii on the northern tip of the island of Oahu, is
the largest operating wind turbine in the world. Its design is based on tech-
nology developed during 15 years of intensive work at the Lewis Research Cen-
ter, which managed the project. With a rated power of 3.2 megawatts, the
Mod-5B has a rotor that spans 320 ft tip to tip, weighs 319,000 1lb, and drives
a power train inside a closed nacelle atop a 200-ft tower. In addition to an
upwind teetered rotor, compact planetary gearbox, and pitchable tip control,
the Mod-5B employs a variable-speed electrical induction generator/control sys-—
tem. While providing increased efficiency, variable-speed operation smooths
out drivetrain and rotor tip vibrations and reduces fatigue loading because
the rotor tips do not have to cycle constantly in gusting winds.
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WIND TURBINE FATIGUE REQUIREMENTS ARE SEVERE
COMPARED WITH OTHER STRUCTURES

Fatigue is a design driver for at least one-half of the primary structure of a

large HAWT. In order to be cost-effective, wind turbines must achieve fatigue

lives longer than structures such as airplanes, bridges, and helicopters, often
by more than an order of magnitude. Almost alone among engineering structures,
wind turbine blades are subject to repeated, full reversals of dead load, which
occur once each rotor revolution. Thus, a large HAWT rotor such as that of the
Mod-5B (which rotates at speeds from 14 to 17.8 rpm) will experience about

150 million reversals of dead weight in its 30-yr design life. This number of

cycles increases inversely with rotor size.
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BOMBER WING STRESS SPECTRUM

As an example of a conventional structure subject to fatigue loading, consider
a typical bomber aircraft wing. In a 4-hr flight, the wing may experience 100
measurable, significant cycles of fatigue loading, or 0.4 cpm, compared with a
minimum of 14 cpm for a wind turbine blade. Even more important is the fact
that a partial reversal of gravity loads occurs only once per flight, namely,
during the so-called "ground-air-ground" cycle. The amplitudes of intermedi-
ate load cycles are generally limited to small fractions of the G-A-G cycle.
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WIND TURBINE BLADE STRESS SPECTRUM

Wind turbine blades also experience a major “ground-air-ground" cycle during
each period of operation. In addition, blades are subjected to two other types
of load cycles which must be considered by the designer. The first type of
load cycle occurs at least once per rotor revolution and is caused by gravity,
wind shear (vertical gradient of wind speed near the ground), inflow distor-
tions (tower blockage of the wind), and small-scale turbulence (smaller than
the rotor diameter). The second type of load cycle is caused by longer-term
changes in wind speed and large-scale turbulence.
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THE MOD-5B AERO-STRUCTURAL-MECHANICAL CONFIGURATION
REDUCES FATIGUE LOADS

The configuration of the Mod-5B wind turbine is a result of a design develop-
ment process which has incorporated active and passive load reduction into each
major subsystem. Small tabs, called vortex generators, are located along the
upwind leading edges of the blades, for the purpose of increasing the stall
angle and reducing unsteady stall loads. The entire rotor is hinged at the hub
to permit a teetering action, automatically balancing tip loads and largely
eliminating gyroscopic loads during yawing. Pitching only the outboard % of
the blade, to control torque and thrust, reduces unit loads on the pitch bear-
ings. A flexible quill shaft and variable-speed generator work together to
reduce torque cycles. The flexible tower has a natural frequency of 1.3 per
revolution to attenuate thrust and side loads from gusts. Its downwind loca-
tion eliminates pulse loads on the blades caused by tower shadow.
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STRUCTURAL DESIGN DRIVERS

While fatigue resistance is a critical design consideration for wind turbines,
the design of large portions of the structure is governed by limit loads and

by stiffness requirements for proper natural frequency placement. Some compo-
nents, such as the quill shaft (the torque tube leading from the rotor to the
gearbox) must meet both limit and stiffness requirements. Similarly, the tower
must meet both fatigue and stiffness criteria. The geometric parameters avail-
able to the designer, such as diameter, wall thickness, and length, are some-
times not sufficient to meet all requirements. When this happens, fracture
mechanics analysis is used to determine a combination of design allowable
stress and inspection criteria that will lead to an acceptable design.
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|
WELDED STEEL ROTOR TECHNOLOGY

Reducing the high cost of the rotor while maintaining its aerodynamic effi-
ciency, ultimate strength, fatigue resistance, and stiffness has been the major
technical challenge of wind turbine development. Welded steel was recognized
as an ideal production material for large rotors, but technical risk was high
because of severe fatigue requirements. A successful design, based on frac-
ture mechanics technology, has been achieved. It tailors elements and joints
to reduce stresses, and maintains strict quality assurance of materials, welds,
and distortions.

Mod-5B Rotor Technical Data

Material ......... Welded ASTM-A633 Tip Speed, mph ......... 147 to 198
Diameter, ft ..cieeeveeccaseesas 320 Airfoil ....... NACA 23010 to 23028
Total Weight, 1b .......... 318,000 Appendages ... Vortex Gen., TE Tabs
Pitchable Tip Length, percent .. 34 Solidity ..... cesreesassasnaas . 0.03
Hub/Tip Chord, ft ...... .. 13.7/4.1 Twist, deg cieeeeecnsscecccncns oo 7
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FATIGUE DESIGN PROCEDURE

As an example of the fatigue design procedure, consider a cross-section weld
joint in the rotor blade. Once the spectrum of fatigue loads acting on this
cross section has been defined (including the probability of occurrence of
mean and cyclic components of load), stress spectra can be calculated for
points around the section. Using appropriate design flaws and a crack
propagation model, a fatigue design life is calculated for each point. The
stress spectrum at each critical point (a point with relatively short life)

is then scaled up or down until a fatigue design life of 30 years is obtained.
The 99.9th percentile stress in this scaled spectrum is then defined as the
"design allowable stress" for that point and the selected inspection criteria.

Next, the dimensions of the elements in the section are changed in an itera-
tive fashion until, considering all applicable factors of safety, the design
margin at the most critical point is positive and approximately zero. Margins
at other points around the section are calculated, and inspection criteria may
be adjusted to optimize the trade-off between weight and cost.

« GIVEN: INTERFACE LOADS VS WIND SPEED VS PROBABILITY OF OCCURRENCE
o GIVEN: INITIAL DIMENSIONS, ASSUMED INITIAL CRACK SIZE AND CRACK
GROWTH MODEL

o CALCULATE ANNUAL FATIGUE LOAD SPECTRUM (MEAN AND CYCLIC) AT
CROSS-SECTION

o CALCULATE ANNUAL STRESS SPECTRUM AND FATIGUE LIFE AT POINTS IN SECTION

« SCALE STRESS SPECTRUM AT EACH CRITICAL POINT UNTIL LIFE EQUALS 30 YEARS

o “DESIGN ALLOWABLE STRESS" AT POINT IS 99.9TH PERCENTILE STRESS IN

SCALED SPECTRUM
o APPLY SAFETY FACTORS AND ITERATE ELEMENT DIMENSIONS UNTIL DESIGN MARGIN

AT MOST CRITICAL POINT IS ZERO
o CALCULATE MARGINS AT OTHER POINTS AND ADJUST INSPECTION CRITERIA FOR
COST-EFFECTIVENESS
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CRACK GROWTH RATE MODEL

An empirical crack growth rate model for the A-grade steels used in the Mod-5B
wind turbine was developed on the basis of laboratory fatigue tests of pre-
cracked specimens. These specimens were subjected to load spectra which simu-
lated the highly variable stress cycles characteristic of wind turbine
components. As is usual in such models, the amount by which the crack grows
during a given cycle depends on the maximum and minimum stress intensities in
the cycle, which, in turn, are dependent on the instantaneous crack size.

The crack growth rate model which best fit the test data was found to have the
following characteristics:

o A threshold stress intensity below which the growth rate is assumed to be
zero. This threshold increases with increasing "R" rat1o (i.e., ratio of
minimum to maximum stress in the cycle).

(o] A retardation factor which, for the same stress intensities, signifi-
cantly reduces the growth rate under variable-spectrum loading compared
with steady fatigue loading.

o] No effect of welding on crack growth rates in stress-relieved specimens.
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TYPICAL ROTOR DESIGN STRESS ALLOWABLES

A typical result of the Mod-5B fatigue design process is shown by this cross-
section weld in the rotor blade at a station 363 in. from the shaft centerline
(19 percent of span). The upwind skin, in which aerodynamic thrust produces
tension loads, is designed for fatigue life requirements, while the downwind
skin, which is generally in compression, is designed for. buckling strength.

The inspection criteria for most of this weld is ™B™, with design allowable
stresses in the range of 13,500 to 18,000 psi, depending on the "R' ratio
which dominates the local stress spectrum. A "B™ weld characteristically
joins plates of equal thickness and is ground flush parallel to the stress

direction.

However, a special "B+" inspection procedure has been specified for a small
forward area. This special inspection detects smaller flaws and thus permits
the design allowable stress to be about 25 percent higher than that for the
“B" inspection. It is cost-effective to use extra inspection in this small

but critical area.
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BLADE CRACK DETECTION SYSTEM

The Mod-5B rotor contains an air-pressure system for detecting a crack through
the blade skin. Dried air is pumped into each blade independently and vented
through calibrated exhaust ports. Air flow rates to the two blades are con-
stantly compared, and a differential flow above an allowable level causes the
automatic control system to shut down the turbine and signal the possible pres-
ence of a crack.

Fracture mechanics theory was used to calculate crack-opening displacements as
a function of crack size and level of applied stress, in order to determine if
there would be sufficient flow early enough to provide adequate warning. It
was found that the toughness of the A-grade steel in the rotor was great enough
that large cracks with detectable air flows were still stable. Tests were run
to verify these flow calculations, using large plates containing 24-in. long
through cracks and stressed to about 18 000 psi. Measured and predicted crack-
opening displacements and air flows were found to agree.

400

= CRITICAL CRACK SIZE REACHED ——————""""_ 7
200 AN /
\ /
100 — //’
— 7
- Ko =125 Vi -~
4 =125 ksivin, — _ ’
FLOW u ¢ ~ 7
THROUGH CRACK o [ ko= 190 KT
DETECT FLOW {PLATE TEST)
(5 ctm) 0
s =
2 WELD AT STATION 363
, | | 1 |
0 100 200 300 200

OPERATING TIME, hr

CD-88-33055

3-296




ASSESSMENT OF MOD-5B STRUCTURAL INTEGRITY

As part of a six-month series of acceptance tests, the structural integrity of
the Mod-5B wind turbine was evaluated by measuring fatigue loads and local
stresses during operation. Local stresses were monitored at 24 critical loca-
tions throughout the rotor, drivetrain, nacelle, and tower structures. Cumula-
tive test time of over 25 hr represented in proportion the operating conditions
which the turbine will experience in its lifetime. The continuously recorded
dynamic stress data were analyzed statistically to determine the 99.9th percen-
tile level for each critical location, and this level was then compared with
the predicted design stress and the material allowable stress for that loca-
tion.

The following conclusions were drawn from this assessment:

o Stress and load levels were at or below design predictions and well below
material allowables.

o] The assumptions on which the 30-yr design life of the structure was based
have been verified, and meeting this design goal still appears feasible.

o Steel rotor technology, including the fracture mechanics approach to
fatigue-resistant design, has been verified.

o Technical risk in building and operating steel wind turbines with diameters
up to 320 ft is now commercially acceptable.
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AIRCRAFT ENGINE HOT SECTION TECHNOLOGY -
AN OVERVIEW OF THE HOST PROJECT

Daniel E. Sokolowski*
Solar Dynamic Power and Propulsion Office
NASA Lewis Research Center

ABSTRACT

NASA sponsored the Turbine Engine Hot Section Technology (HOST) Project to
address the need for improved durability in advanced aircraft engine combustors
and turbines. Analytical and experimental activities aimed at more accurate
prediction of the aerothermal environment, the thermomechanical loads, the
material behavior and structural responses to loads, and life predictions for
cyclic high-temperature operation were conducted from 1980 to 1987. The pro-
ject involved representatives from six engineering disciplines who are spread
across three work sectors - industry, academia, and NASA. The HOST Project not
only initiated and sponsored 70 major activities, but also was the keystone in
joining the multiple disciplines and work sectors to focus on critical research
needs.

The project was managed from within the Structures Division at the NASA Lewis
Research Center. Accordingly, research results from the HOST disciplines of
structural analysis and fatigue and fracture are reported throughout this con-
ference publication. The three papers that follow this one summarize the
project's research results in the disciplines of advanced high-temperature
instrumentation, combustion, and turbine heat transfer. Research in surface
protection, such as thermal barrier coatings, is not reported in this confer-
ence publication. This paper provides a broad overview of the HOST Project, a
summary of major accomplishments, and initial indications of the project's
impact.

Numerous publications provide further details about research results from the
HOST Project. Six annual workshops were conducted with conference proceedings
being provided for each one (Turbine Engine Hot Section Technology, 1982 to
1987). Each of the proceedings generally covers research results for the pre-
ceding year. The last two proceedings also include a bibliography of defini-
tive research reports. A comprehensive bibliography of the HOST Project is
being prepared and is scheduled for publication later this year (Sokolowski,
1988a). Finally, a comprehensive final review of the HOST Project's research
accomplishments and their impact has been prepared and also will be published
later this year (Sokolowski, 1988b).

*Formerly Manager, HOST Project.
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TRENDS IN TURBINE ENGINE OPERATING REQUIREMENTS

Since the introduction of the gas turbine engine to aircraft propulsion, the
quest for greater performance has resulted in a continuing upward trend in
overall pressure ratio for the engine core. Associated with this trend are
increasing temperatures of gases flowing from the compressor and combustor and
through the turbine. For commercial aircraft engines in the foreseeable
future, compressor discharge temperature will exceed 1200 °F, while turbine
inlet temperature will be approximately 2700 °F. Military aircraft engines
will significantly exceed these values.
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EFFECT OF MORE SEVERE OPERATING CONDITIONS ON COMBUSTOR LINERS

Since 1973 increasing fuel prices have created the demand for energy conserva-
tion and more fuel efficient aircraft engines. In response to this demand
engine manufacturers continually increased the performance of current genera-
tion gas turbine engines. Soon afterward, the airline industry began to
experience a notable decrease in the durability or useful life of critical
parts in the engine hot section - the combustor and turbine. This was due
primarily to cracking in the combustor liners, turbine vanes, and turbine
blades. Spalling of the thermal barrier coatings that protect combustor
liners also occurred.

ORIGINAL PAGE IS
OE POCR QUALITY,

* AXIAL AND CIRCUMFERENTIAL CRACKS
* EXTENSIVE SPALLING OF THERMAL BARRIER COATING
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EFFECT OF MORE SEVERE OPERATING CONDITIONS ON ENGINE MAINTENANCE

For the airlines, reduced durability for in-service engines was measured by a
dramatic increase in maintenance costs, primarily for high bypass ratio
engines. Higher maintenance costs were especially evident in the hot section.
Hot section maintenance costs account for almost 60 percent of the engine
total, as reported by Dennis and Cruse, 1979.

“"HOT SECTION PARTS ACCOUNT FOR 60 PERCENT OF ENGINE MAINTENANCE
COSTS. IN 1978, APPROXIMATELY $400 MILLION WAS SPENT...”
A.J. DENNIS, PRATT & WHITNEY (AIAA 79-1154)
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EFFECT OF MORE SEVERE OPERATING CONDITIONS ON FLIGHT SAFETY

Besides having an effect on maintenance costs, failure of hot section parts
can affect flight safety. An example is a Boeing 737 accident in Manchester,
England, in August 1985, with the loss of 55 lives. The accident was a direct

result of failure due to cracking in a combustor liner and subsequent puncture
of a wing fuel tank.
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APPROACHES TO IMPROVING HOT SECTION DURABILITY

Durability can be improved in hot section components by using any combination
of four approaches described below.

(1) High-temperature materials - High-temperature metallic materials cur-—
rently include nickel- and cobalt-based superalloys. Certain elements of these
alloys, such as cobalt, are in short supply and are expensive. Recently,
Stephans (1982) completed a study of ways to reduce their usage. Advanced
high-temperature superalloy components also include directionally solidified,
single-crystal, and oxide-dispersion-strengthened materials. For such materi-
als, the development time is lengthy, fabrication is sometimes difficult, and
again, costs are high. Thus, successful use of these materials requires a bal-
ance among design requirements, fabrication possibilities, and total costs.

(2) More effective cooling techniques - Current cooling techniques tend to
be sophisticated; fabrication is moderately difficult. In higher performance
engines, cooling capability may be improved by increasing the amount of cool-—
ant. But the penalty for doing this is a reduction of thermodynamic cycle per-
formance of the engine system. In addition, the coolant temperature of such
advanced engines is higher than that for current in-service engines. Conse-
quently, more effective cooling techniques are being investigated. Generally,
they are more complex in design, demand new fabrication methods, and may
require a multitude of small cooling holes, each of which introduces potential
life-limiting high stress concentrations. Acceptable use of the advanced cool-
ing techniques will require accurate models for design analysis.

(3) Advanced structural design concepts - The introduction of advanced
structural design concepts usually begins with a preliminary concept that then
must be proven, must be developed, and most critically must be far superior to
entrenched standard designs. Acceptance certainly is time consuming, and bene-
fits must be significant. For improved durability in high-performance combus-
tors, an excellent example of an advanced structural design concept is the
segmented liner (Tanrikut, et al., 1981). The life-limiting problems associ-
ated with high hoop stresses were eliminated by dividing the standard full-hoop
liners into segments. At the same time, designers realized increased flexibil-
ity in the choice of advanced cooling techniques and materials, including
ceramic composites.

(4) More accurate design analysis tools - Finally, the design analysis of
hot section component parts, such as the combustor liners or turbine vanes and
blades, involves the use of analytical or empirical models. Such models often
involve computer codes for analyzing the aerothermal environment, the thermo-
mechanical loads, heat transfer, and material and structural responses to such
loading. When the parts are exposed to high-temperature cyclic operation as
in a turbine engine, the repetitive straining of the materials invariably
leads to crack initiation and propagation until failure or break-away occurs.
The useful life of a part is usually defined as the number of mission cycles
that can be accumulated before initiation of significant cracks. Thus, design-
ers need to predict useful life accurately so they can design a part to meet
requirements.
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FRAMEWORK FOR THE HOST PROJECT

Efforts to predict the 1ife of a part generally follow the flow of analytical
models shown in the figure below. Thus, designing a part such as a turbine
blade to meet a specified life goal may require several iterations through the
life prediction system, varying the blade geometry, material, or cooling effec-
tiveness in each pass, until a satisfactory life goal is predicted.

INTEGRATION OF ANALYSES LEADS TO LIFE PREDICTION

GEOMETRY
AND
MATERIALS
DEFINITION

« COMBUSTOR LINERS
« TURBINE BLADES
 TURBINE VANES

AIRCRAFT
MISSION
DEFINITION

ENGINE MATERIALS BEHAVIOR
OPERATING
REQUIRE- CONSTITUTIVE FAILURE
MODELS CRITERIA

MENTS

HOT SECTION THERMO-
ENVIRONMENT Mff_g:glsm STRUCTURAL u:\(:ac:és LIFE
. RESPONSE PREDICTION
CH&:?::JSR CHARACTER- SUMMATION
N
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THE HOST PROJECT

tors and turbines, NASA has sponsored the Turbine Engine Hot Section Technology
(HOST) Project. The Project was conducted from fiscal year 1981 through 1987.

The HOST Project has developed improved analytical models for the aerothermal
environment, the thermomechanical loads, material behavior, structural
response, and life prediction, along with more sophisticated computer codes,
that can be used in design analyses of critical parts in advanced turbine
engine combustors and turbines. Use of these more accurate analytical tools
during the design process will ensure improved durability of future hot section
engines components.

nary and integrated efforts. The disciplines included in HOST were instrumen-
tation, combustion, turbine heat transfer, structural analysis, fatigue and
fracture, and surface protection.

Most disciplines in the HOST Project followed a common approach. First, phe-
nomena related to durability were investigated, often using benchmark quality
experiments. With known boundary conditions and proper instrumentation, these
experiments resulted in a better characterization and understanding of such
phenomena as the aerothermal environment, the material and structural behavior
during thermomechanical loading, and crack initiation and propagation. Second,
state-of-the-art analytical models were identified, evaluated, and then
improved upon through use of more inclusive physical considerations and/or more
advanced computer code development. When no state-of-the-art models existed,
researchers developed new models. Finally, predictions using the improved
analytical tools were validated by comparison with experimental results,
especially the benchmark data.

OBJECTIVE

* PROVIDE MORE ACCURATE DESIGN ANALYSIS TOOLS WHICH WILL BETTER
ENSURE, DURING THE DESIGN PROCESS, IMPROVED DURABILITY OF HOT
SECTION COMPONENTS.

APPROACH

* FOCUS MULTIDISCIPLINARY RESEARCH TOWARD
—BENCHMARK QUALITY EXPERIMENTS
—ADVANCED ANALYTICAL MODELS
—IMPROVED COMPUTER CODES

CD-88-32731

3-306



ORIGINAL PAGE IS
HOST PROJECT ACTIVITIES OF POCR QUALITY

The HOST Project initiated and sponsored 70 major research activities across
six technical disciplines. Research results from many of these activities are
reported throughout this publication.
TABLE 1. - HOST Project Activities
Contract (C), Grant (G), or

Instrumentation NASA Organization (N) Number
Hot Section Viewing System . . . . . . « . . . T N%'SS-:?.'{TSG

Dynamic Gas Temperature Measurement System « A . v 4 s ¢ o ¢ v ¢ 0 s s s 0o © NAS3-23154
Dynamic Gas Temperature Measurement System « B . o v v ¢« ¢ ¢ s ¢ e o e s o0 oo C NAS3-24228
Turbine Static Strafn Gage = A . . . ¢ v v v ¢ v e s e s s s e e C NAS3-23169
Turbine Static Strafn Gage - B . . . « ¢« « ¢ ¢ v v s s s e e s s e e sse C NAS3-23722
Turdbine Heat FIux SEASOTS o v ¢ v ¢ s ¢+ v ¢ o s e s s s s e v e s eeeees € NAS3-23529
Laser Speckle Strafn Measurement . . . v ¢ ¢ ¢ v s s s s e e s e e a0 oeer C NAS3-26615
High Temperature Strain Gage Materials . . . e s s e s s s eeaeass G NAG3-501
Hot Section Sensors . . . . i s e s s seeesse N 2510
Laser Anemometry for Hot Section Appliuuons R, 2520/2830
HOST Instrument Applications . + ¢ v ¢ v ¢ ¢ v s o v o v v e o oo o v ee o N 2510
Comdustion
Assessment of Combustor Aerothermal Models - | s h e s e e e e e C NAS3-23523
Assessment of Combustor Aerothermal Models = Il v ¢ v v o v o v v ¢ o o o o 4 NAS3-23524
Assessment of Combustor Aerothermal Models « IIl o o o o v o v v 0 0 0 o o C NAS3-23525
Improved Numerical Methods = I o o« o o o v v o o o o o s s 0 s 0 v 0 s 0 0 s c NAS3-24351
Improved Numerical Methods = JI & v v ¢ v v o v o s o s s 0 0 0 0 0 0 s 0o 4 NAS3-24350
Improved Numerica) Methods = Il .+ v ¢ v ¢ ¢ v ¢ o 0 ¢ 0 0 e 0 0 0 0o v 0 0 6 NAG3-496
Flow Interaction Experdment . o v v v v ¢ v v v o 0 0 s e e e e e e e ¢ NAS3-24350
Fuel Swirl Characterization « 1 .. .. . .. R ¢ NAS3-24350
Fuel Swirl Characterization « Il . . . . . .. [ C NAS3-24352
Mass and Moments Transfer . . v . o v . 0. R [ NAS3-22771
Diffuser/Combustor Interaction ., . . . . . . . T A 4 F33615-84-C-2427
Dilution Jet Mixing Studies . . .. R C NAS3-22110
Latera)l Jet Injection into Typical Ccmbustor Floufields e s e e e e e [ NAG3-549
Flame Rac1ation STUOI@S v ¢ v v v v v v v ¢t v 0 0 o 0 o 0 0t b s v o b u e N 2650
Turbine Heat Transfer '
ainstream Jurbulence Influence on Flow in a Turning Duct = A o o « v 4 [ NAS3-23278
Mainstream Turbulence Influence on Flow in a Turning Duct « 8 o « o ¢ & 6 NAG3-617
2+0 Heat Transfer without FIIm Cooling . . & v v o v o o ¢ 6 o s o 0 o v & [ NAS3-22761
2-0 Heat Transfer with Leading Edge FIiIm Cooling & v o o ¢ o ¢ o v o ¢ o o C NAS3-03695
2-D Heat Transfer with Downstream FIIm Co0lING . 4 « 4 o ¢ o o o s o ¢ ¢ o C NAS3+2461¢
Measurement of Blade and Vane Heat Transfer Coefficient in & Turbine Rotor |4 NAS3-23717
Assessment of 3-D Boundary Layer Code . . T c NAS3-23716
Coolant Side Heat Transfer with Rotation . s e s e e e C NAS3-23691
Anglytic Flow and Heat Transfer . . . o v v o ¢ o s s o v v 0 o ¢ 0 0 s o ¢ NAS3-24358
Effects of Turbulence on Heat Transfer . . « ¢ v ¢ o o ¢ 0 ¢ 4 o 0 2 0 o o 6 NAG3-522
NpicgwnNuzTnnsler........... C e e e e e e [ NAG3-623
Impingement Cooling . . . P ) G NSG3-075
Computation of Turbine Blace Heat TPANSTEr o v v e h e e e e [ NAG3-579
Advanced Instrumentation Development . o . ¢ v ¢« o o o o o 0 4 0 00w N 2640
warm Turbine Flow Mapping with Laser Anemometry « o o o o o o o o o o o o N 2620
Rea) Engine-Type Turdine Aerothermal Testing .+ o 4 ¢ v v v 0 o v o v 0 o s ] 2640
Structural Analysis
Yherea 1/5truciural Load Transfer Code . . . . . . P NAS3-23272
3-D Inelastic Analysis Methods = 1 . . . . . .. g NAS3-23697
3-D Inelastic Analysis Methods = II . . . .. cr e e s e e e s OO NAS3-23658
Component Specific Modelfng . « « v v v v v 4 & e r e s e £ NAS3-23687
Liner Cyclic Life Determination . . .. .. .. cev v e N 5210
Structura)l Components Response Program . . . . . t e e s e Ny 5210
High Temperature Structures Research Labcratory t e s e s s eeee N 5210
Constitutive Mode) Development . o v v « v v o c e e e e eees N $210
Constitutive Modeling for Isotropic Materials - ! R 4 MWASI-¢ 3925
Constitutive Modeling for lsotropic Materials - Il t e v e s enaes € NAS3-23927
Theoretics) Constitutive Mocels for Single Crystal Alloys ve e s esevses B NAG3-51)
Biaxial Constitutive Equation Development for Single Crystals and Directionally 6 NAGI-512
SOMMAIfIRE ATIOYS &« v v v ¢ v s v s b st e b e e e e s e e “.
fatigue and Fracture i
Treep-Fatigue Life Prediction for Isotropic Materials . . ¢ ¢ v v v v v v s oo € NAS3-23288
Elevated Temperature Crack Propagation . . . . T NAS3-23940
Life Prediction and Material Constitutive Benavior for An1sotrop1c Materials ., C NAS3-23939
Analysis of Fatigue Crack Growth Mechanism . . . v v v v e s v o v o s s s s es G NAG3-348
yitalization of High Temperature Fatigue and Structures Laboratory . « .« s+ N 5220
Surface Protection ’ ,
Effects of Surface Chemistry on Hot Corrosion . . s i s e e e C WAS3-23926
Therma) Barrier Coating Life Prediction -1 ., ., P S NAS3-23943
Therma) Barrier Coating Life Prediction = Il . . ¢ v v v v v v v v s v e e € NAS3-23944
Therma) Barrier Coating Life Prediction - II1 . . v v v v v v v e v v e € NAS3-23945
Afrfol) Deposition Model . . v v o v v v s s e s v o s s s e s s s e aas B NAG3-201
Mechanical Behavior of Thermal Barrier Codtings . .« v v o e e s s s s o s o+ 6 ; KCC3-27
Coating Oxtdation/Diffusion Predfction . . ¢« v v v v v e s v oo v v oo oo K 5160
Deposttion Model Verification . . v v v v ¢ o v o v s o s o s s s ossesaoe N 5160
Dud) Cycle ALaCk  « « v v v v v v v v v v v e s s v s e e N $160
Riglinginctorrchnon........ e e i s e e e r e N 5160
R T e S A | 5160

Burner Rig Modernization . . e
Notes: A, 8 Activities in series

l. 11, 111 Activities in parallel
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MAJOR ACCOMPLISHMENTS

The HOST Project produced numerous accomplishments through 70 activities that
were initiated and conducted in the project's six disciplines. Major accom-
plishments catagorized by discipline follow. Background for the work as well
as results obtained are included.

INSTRUMENTATION

The instrumentation work entailed five programs, covering a combustor viewing
system, a dynamic gas temperature system, laser anemometry, heat flux sensors,
and high-temperature strain measurement.

Combustor Viewing System

To allow visual diagnoses of abnormal operation of combustors, fuel injectors,
liners, and nozzle guide vanes, HOST researchers developed a combustor viewing
system that provides qualitative images during component operation. The view-~
ing system consists of a water-cooled optical probe, a probe actuator, an
optical interface unit that couples the probe to cameras and to an illumination
source, and system controls. This system has been used in both combustor com~
ponent and full-scale engine tests, for combustor liner durability studies, and
for flowpath diagnostics. It has been used to examine light-off and blowout
characteristics and appears to have considerable potential for other time-
dependent phenomena and for flame radiometry.

Dynamic Gas Temperature System

Prior to HOST, researchers had no techniques to accurately measure fluctuating
hot gas temperatures at frequencies above 10 Hz. Through HOST we developed a
dynamic gas temperature measurement system and tested it in a F-100 engine
facility and a high-pressure component test facility. Accurate gas temperature
measurements are now possible up to 1-KHz and 3000 °F peaks. This helps with
modeling combustor flows and better defines the environment imposed on turbine
airfoils.

Laser Anemometry

The laser anemometer (LA) has become a valuable tool for nonintrusive gas
velocity measurements in turbine engine work. Under HOST, we developed tech-
nology needed to apply LA to high-temperature turbines. Specific work areas
included seeding, data acquisition, system optimization, and optical design.

Seeding. - Seed materials and high-volume seed generators were evaluated
in a small combustor facility. We examined various refractory materials dis-
persed with a fluidized bed and titanium dioxide seed produced by the chemical
reaction of titanium tetrachloride and water vapor.
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Data acquisition. - Efficient data acquisition requires minimum operator
intervention during test runs. To accomplish this, we developed a computer-
controlled signal preprocessor for counterprocessors. This preprocessor con-
trols filter settings, photomultiplier tube (PMT) voltage, and radio-frequency
gain, as well as monitoring the PMT current.

System optimization. - A computer model was developed to determine optimal
designs for fringe-type LA's. Prediction analysis methods were used to deter-
mine optical designs that provide minimum measurement uncertainties for given
particle size, proximity to surfaces, and signal processor parameters. Experi-
ments were conducted to measure surface reflectance properties - data needed
for system optimization. A study of filter-induced errors was conducted to
determine the best filter designs for use with counterprocessors.

Optical design. - The conventional fringe-type LA is not necessarily
optimal for measurements within turbomachines. It has the required large
acceptance angle, but its relatively large probe volume precludes accurate
measurements close to flow passage walls. Under HOST, a unique four-spot
time-of-flight LA was developed and tested. The four-spot LA has both a large
acceptance angle and the capability to measure close to walls. In testing, we
obtained successful measurements as close as 75 uym from a surface normal to the
viewing direction. Another optical design project conducted under HOST was the
development of an optical corrector for use with the cylindrical windows used
in turbine facilities. This corrector eliminates the aberrations caused by the

window.

Heat Flux Sensors

Heat flux sensors were developed and tested in both combustor liner and turbine
airfoil applications. Tests in combustor liners provided useful heat flux
data. However, the sensors proved to be too sensitive to transverse tempera-
ture heat flux gradients for most applications to turbine airfoils. This was
particularly true for the Gardon gage sensor because of its lack of symmetry.
Sensor configurations with lower transverse sensitivity have been considered
but not tested.

High-Temperature Strain Measurements

The program's goal was to improve the capability for static strain measurement
from the pre-HOST temperature limits of roughly 700 to 1800 °F. This was the
most ambitious research effort of HOST's instrumentation subproject. We used
three approaches in this work: (1) To develop improved resistance strain gage
alloys, (2) to learn how to use available strain gages more effectively, and
(3) to evaluate alternative optical strain measuring systems.

Improved strain gage alloys. - Improved strain gage alloys in the FeCrAl
and PdCr systems were developed, but neither has been demonstrated as a suc-
cessful high-temperature strain gage. Work continues on developing wire and
thin film strain gages of PdCr.
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More effective use of available strain gages. -~ Evaluation tests of strain
gages mainly from the FeCrAl system (including wire gages from China) have pro-
vided a better understanding of FeCrAl gage characteristics. As a result, an
experiment to measure combustor liner strain in which strain gage cooling rates
were carefully controlled to match those used in pre- and post-test calibra-
tions provided useful strain data at temperatures up to 1250 °F.

Alternative strain measuring systems. - Optical systems appear to have
potential for high-temperature noncontact strain measurements. One such sys-
tem, a laser speckle photogrammetric system, was tested and shown to be capable
of measuring thermal expansion of a Hastelloy-X plate at temperatures up to
1600 °F. However, problems related to index refraction gradients in the gas
within the viewing path must be solved (or at least controlled) to permit this
technology to be applied widely.

Thin Film Sensors

In addition to the work described above, we have been working on technology to
put thin film sensors on turbine engine hot section components. Thin film
thermocouple technology has been developed and such sensors are in use in
engine testing. Current work in this area is focused on three goals: Basic
improvements in sensor processing technology, extension to other sensors such
as strain gages and heat flux sensors, and accommodating changes in substrate
materials. This work was partially supported by the HOST Project.

COMBUSTION

The HOST Project combustion work emphasized aerothermal modeling. The original
plan called for three work phases. During phase 1, researchers assessed exist-
ing gas turbine combustion models. They then made suggestions for improving
existing models, particularly for numerical accuracy. In phase 2 they improved
models for interacting but nonreacting fluid flows. Phase 3 was to improve
models for interacting and reacting fluid flows. Phase 3 work was not per-
formed (because HOST Project funding was curtailed), but it is still important
work that substantially affects our understanding and the predictive accuracy
of combustion fluid flow models.

A separate work element involved dilution jet mixing. This work started
before the HOST Project, but after the initiation of the HOST Project it was
funded by HOST. While the dilution jet mixing work had an independent exist-
ence, it became an integral part of the HOST research environment. This work
was less ambitious in scope than the three-phase aerothermal modeling task, but
it contributed significantly to the aerothermal phase 1 modeling assessment.

Assess Combustor Aerothermal Modeling - Phase 1

Gas turbine combustor models include submodels of turbulence, chemical kinet-
ics, turbulence/chemistry interaction, spray dynamics, evaporation/combustion
radiation, and soot formation/oxidation. During phase 1 model assessment work,
three HOST contractors made extensive assessments of numerics, physical sub-
models, and the suitability of available data. They tested several models:
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K-E turbulence, algebraic stress and its modifications, scalar transport, and
turbulence/chemistry interaction. Their major conclusion was that available
computational fluid dynamics codes provided a useful combustor design tcol,
but the codes were only qualitatively accurate. Further study was needed to

improve the numerical scheme and specified experimental data before various
emerging physical submodels could be properly assessed.

The assessment jdentified a serious deficiency in numerical accuracy for
data on flows, particularly where the false diffusion is of the same order of
magnitude as the turbulent diffusion. This masked differences between turbu-
lence models such that very different models gave essentially the same result
and sometimes caused undeservedly good agreement between data and predictions.

Improved Spatial Property Variations and Quantitative Accuracy - Phase 2

During the second phase of the aerothermal modeling work, HOST researchers
undertook three tasks: Improved numerical methods, a flow interaction experi-
ment, and fuel injector/air swirl characterization. We improved the resolution
of spatial property variations and quantitative accuracy of aerothermal codes
through three-dimensional numerical schemes, improved turbulence and chemistry
models, and relevant benchmark quality data. We concentrated on nonreacting

single- and two-phase swirling and nonswirling flows.

Improved numerical methods. - Here we found CONDIF and fluxspline usefulj
for improved computational efficiency, modifications such as SIMPLER and PISO
have proven beneficial.

Flow interaction experiments. - Here researchers (1) studied the inter-
actions between the combustor and diffuser systems and (2) obtained comprehen-
sive mean and turbulence measurements for velocity and species concentration

in a three-dimensional flow model of the primary zone of combustion chambers.
These experiments were conducted with both air and water multiple-swirler rigs,
as well as single swirler and swirling jet rigs. A key feature of this program
provided a comparison of model calculations against data obtained, to ensure
that data are complete and consistent and that they satisfy the boundary condi-
tion input requirements of current three-dimensional codes.

Fuel injector/air swirl characterization. - Here we sought to obtain
fully specified mean and turbulence measurements of both gas and droplet phases
downstream from a fuel injector and air swirler typical of those used in gas
turbine combustion chambers. The flowfield of interest is an axisymmetric
particle-laden jet flow with and without confinement and coannular swirling air
flow. The comprehensive experimental data generated in these programs will be

used to validate advanced models for turbulence, flow, stress, and spray.

Interacting-Reacting Flows - Phase 3

Just as important as phase 2 Aerothermal Modeling programs that have led to
significant improvements in our technical ability to predict nonreacting gas
turbine combustor flow fields is work planned for phase 3 but not performed
during the HOST Project. This phase 3 work would have collected fully speci-
fied reacting flow data, similar to that being gathered for nonreacting flows.
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mixing diluting air jets with combustion gases. It also let us predict
combustor exit temperatures accurately within the database's range.

The dilution jet mixing effort identified key flow parameters, collected data
on the effect of varying these characteristics, and developed an empirical flow
field model.

Conducted jointly by NASA Lewis and Garrett, this work concentrated on mixing
of single-sided and opposed rows of jets in a confined duct flow to include
effects of noncircular orifices and double rows of jets. The database was
extended to include realistic effects of combustion chamber flow area conver-
gence, nonisothermal mainstream flow, opposed (two-sided) in-line and staggered
injection, and orifice geometry. Analysis of the mean temperature data
obtained in this investigation showed that the effects of orifice shape and
double rows are most significant in the region close to the injection plane.

and (2) the empirical model Provides an alternative to numerical modeling for
flows within the range of the dilution jet mixing experiments.

TURBINE HEAT TRANSFER

Toward this end researchers gathered data for broad databases and, thus, pre-
pared for future research. The development work was of two types: Experi-
mental databases and analytical tools. The experimental databases covered both
stationary and rotational work. The experimental work is discussed first.

Local Gas-to-Airfoil Heat Transfer Rates

HOST researchers obtained broad databases and modified the STANS5 code to
accurately predict heat transfer coefficients, especially at the transition
point, for film- and non-film-cooled airfoils.

Allison researchers did initial work on the stator airfoil heat transfer. They
checked the effects of several factors such as Reynolds number, turbulence
level, and Mach number on heat transfer coefficients for various airfoil
geometries at simulated engine conditions. This research was conducted for
non-film-cooled airfoils, showerhead film-cooled designs, and showerhead/
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gill-region film cooling concepts. They obtained an extensive dataset that
systematically shows the important effects of film cooling schemes on modern
airfoils. The dataset went beyond the traditional effectiveness correlations
to provide actual heat transfer data. It should provide a valuable baseline
for emerging analysis codes.

Stanford University conducted a systematic study of the physical phenomena
affecting heat transfer in turbine airfoil passages. Experimental research
dealt with high free-stream turbulence intensity and large turbulence scale
that might be representative of combustor exit phenomena. Their results show
that heat transfer augmentation can be as high as 5X at a high value of free-
stream turbulence intensity, but only 3X if the length scale is changed. These
results suggest that the designer must know a great deal more about the aero-
dynamic behavior of the flow field in order 'to predict successfully the thermal
performance of the turbine components.

The rotation work divided into concentrations on the gas-side airfoil and the
coolant effect within passages.

Airfoil Rotation Effects on Heat Transfer

Scientists at United Technologies Research Center worked on determining the
effects of airfoil rotation on heat transfer for the blade. This effort pro-
duced single-stage turbine data for both high- and low-inlet turbulence, one
and one-half stage turbine data (focusing on the second vane row), and aero-
dynamic quantities such as interrow time averaged and rms value of velocity,
flow angle, inlet turbulence, and surface pressure distributions. The results
varied depending on location and surface. Work in this area indicates that
pressure surface heat transfer still requires more study to explain high heat
transfer.

Work in the blade's tip region was done at Arizona State University. The
group at ASU experimentally modeled a blade tip cavity region and determined
heat transfer rates by a mass transfer analogy with naphthalene. The dataset
produced an important new addition to a traditionally neglected area and shows
that with carefully designed datasets and analyses researchers can obtain an
optimal design for tip cavities.

Coolant Rotation in Smooth-Wall Passages

Pratt & Whitney performed heat transfer experiments in a square ‘passage with
two 180° flow turns, with and without turbulators, and with and without rota-
tion. Results for the smooth surface configuration show a strong rotational
effect. Pratt also modified the three-dimensional Navier-Stokes TEACH code to
predict flow and heat transfer in internal passages and rotation. It is ade-
quate for simple geometric cases; however, it requires revision before applica-
tion to more complex cases. Results for the turbulated passages also show
strong rotational effects and significant differences in augmentation between
leading and trailing surfaces.
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The other half of the heat transfer subproject concentrated on developing
analytical tools for boundary layer analysis and viscous flow analysis.

Three-Dimensional Boundary Layer

In this area HOST work concentrated on improving prediction accuracy for
three-dimensional effects on heat transfer. This involved assessing three-
dimensional boundary layer codes that were not designed for heat transfer
work to determine what revisions were needed to make the code useful in heat
transfer efforts.

Contracts were let for two efforts. United Technologies Research Center
assessed the applicability of its three-dimensional boundary layer code to
calculate heat transfer, total pressure loss, and streamline flow patterns in
turbine passages. The results indicate a strong three-dimensional effect on a
turbine blade, and they agree qualitatively with experimental data. The same
code was modified for use as a two-dimensional unsteady code to analyze the
rotor-stator interaction phenomena.

The other boundary layer study at the University of Minnesota addressed numeri-
cal turbulence modeling, particularly for turbine airfoils. This work extended
modeling to apply to transitional flows for both free-stream turbulence and
pressure gradients. There was a reasonable improvement in predictive ability.
This effort is a good start in establishing a methodology for moving away from
heavy dependence on empirical constants.

Analytic Flow and Heat Transfer Modeling

Scientific Research Associates (SRA) worked on a fully elliptic, three-
dimensional Navier-Stokes code. This group modified the code to handle turbine
applications. Comparisons of predictions with analytical experimental data are
good when researchers can specify location for the boundary layer transition.
Ideally, the code would allow researchers to handle various locations. In this
respect, work still remains on improving turbulence and transition modeling.

STRUCTURAL ANALYSIS

Under this heading, there are six major thrusts, involving an interface code
between heat transfer and structural analysis, three-dimensional inelastic
codes, constitutive models, component-specific modeling, liner cyclic life
testing, and substantiated design analysis methods and codes.

Heat Transfer/Structural Analysis Interface Code

With HOST support, General Electric researchers developed an interface code,
called TRANSITS, that transfers up to three-dimensional thermal information
automatically from heat transfer codes (that generally use coarse finite
element grids) to structural analysis codes (that use finer grids). Key fea-
tures include independent heat transfer and stress model meshes, accurate
transfer of thermal data, computationally efficient transfer, steady-state and
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transient data, user frieﬁdly program, flexible system, internal coordinate
transformations, automated exterior surfacing techniques, and geometrical and
temporal windowing.

Three~Dimensional Inelastic Codes

HOST provided development of three-dimensional inelastic structural analysis
codes, involving two contractors, for nonlinear behavior at high thermo-
mechanical loads. At Pratt & Whitney, three developed codes covered different
approaches and degrees of complexity: MOMM, MHOST, and BEST3D. These codes
provide a tenfold increase in computational efficiency - with improved
accuracy. They embody a progression of mathematical models for increasingly
comprehensive representation of the geometrical features, loading conditioms,
and forms of nonlinear material response. MOMM, a mechanics of materials
model, is a stiffness method finite element code that uses one-, two-, and
three-dimensional arrays of beam elements to simulate hot section component
behavior. MHOST employs both shell and solid (brick) elements in a mixed
method framework to provide comprehensive capabilities for investigating local
(stress/strain) and global (vibration, buckling) behavior of hot section compo-
nents. BEST3D is a general purpose, three-dimensional, structural analysis
program using the boundary element method.

General Electric, the second contractor on the inelastic work, also developed

a code that performs three-dimensional, inelastic structural analysis. The
objective of this program was to develop analytical methods for evaluating the
cyclic time-dependent inelasticity that arises in hot section engine compo-
nents. Because of the large excursions in temperature associated with hot
section engine components, the techniques developed must be able to accommodate
large variations in material behavior including plasticity and creep. To meet
this objective, General Electric developed a matrix consisting of three consti-
tutive models and three element formulations. A separate program for each com-
bination of constitutive model/element model was written, making a total of
nine programs. Each program can stand alone in performing cyclic nomlinear
analysis.

The three constitutive models assume distinct forms: A simplified theory
(simple model), a classical theory, and a unified theory. The three element
formulations used an 8-node isoparametric shell element, a 9-node shell
element, and a 20-node isoparametric solid element.

For linear structural analysis, the nine codes use a blocked-column skyline,
out-of-core equation solver. To analyze structures with nonlinear material
behavior, the codes use an initial stress interactive scheme. This code
contains a major advance in our ability to handle a dynamic time incrementing
strategy. : -

A

Constitutive Models

Before HOST, there was no capability to perform combined elastic-plastic

creep structural analyses. There were limited high-temperature databases for
constitutive model formulations and verifications. Through the HOST Prcject,
researchers developed viscoplastic constitutive models for both isotropic and
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anisotropic materials, broadened the database capability, and verified models
for a range of test conditions. These efforts led to a 30-percent improvement
in high-temperature stress-strain prediction. These factors combined to make
Lewis an internationally recognized leader in comstitutive model development.

Isotropic material modeling. - In efforts aimed at isotropic material
modeling, theorists from three organizations provided new models. The first
organization, Southwest Research Institute, developed two existing models
(Walker and Bodner-Partom) of the unified type for application to isotropic,
cast, nickel-base alloys used for air-cooled turbine blades and vanes. Both
models demonstrated good correlation with experimental results for two PWA
alloys, B1900+Hf and MAR-M247. The program also demonstrated rather conclu-
sively that the unified constitutive model concept is a powerful tool for
predicting material response in hot section components under complex, time-
varying thermomechanical loadings. At General Electric, researchers evaluated
several viscoplastic constitutive theories against a large uniaxial and multi-
axial database on Rene 80 material, which is a cast nickel-base alloy used in
turbine blade and vane applications. No available approach for modeling the
high-temperature, time-dependent behavior of Rene 80 was satisfactory, so GE
developed a new theory that predicts with good accuracy the 90° out-of-phase
tension-torsion experimental results at elevated temperatures. Finally, at a
third organization, the University of Akron, researchers developed a time-
dependent description potential function based on constitutive theory with
stress dependence on J2 and J3 integrals that reduces to a J2 theory as a
special case.

Anisotropic material modeling. - Modeling of anisotropic material also
had three groups involved, all universities. Turbine manufacturers have been
developing nickel-base monocrystal superalloys for years. University of
Connecticut theorists successfully modeled the deformation behavior of these
materials using both a macroscopic constitutive model and a micromechanical
formulation based on crystallographic slip theory. The University of
Cincinnati developed a model for nickel-base single-crystal alloy Rene N4 using
a crystallographic approach. The current equations modified a previous model
proposed by Dame and Stouffer, where a Bodner-Partom equation with only the
drag stress was used to account for the local inelastic response in each slip
system. The University of Akron developed a continuum theory for representing
the high-temperature, time-dependent, hereditary deformation behavior of metal
composites that can be idealized as pseudohomogeneous continua with locally
definable directional characterizations.

Component-Specific Modeling

HOST allowed us to develop a modular code for nonlinear structural analyses
that predicts temperatures, deformation, and stress and strain histories. It
also gave us an automatic solution strategy for liners, with similar strategies
underway for blades and vanes. The package contains five modular elements that
are linked by an executive module. The Thermodynamic Engine Model (TDEM)
translates a list of mission flight points and time differences into time
profiles of major engine performance parameters. The Thermodynamic Loads

Model (TDLM) works with the output of the TDEM to produce the mission cycle
loading on the individual hot section components. The Component Specific
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Structural Modeling Module provides a generic geometry pattern for each
component. General Electric also created a software recipe that contains
default values for point coordinates, lengths, thicknesses, angles, and radii.
Users may modify specific values, but the software has saved them the effort
of identifying basic geometry and parameters. Once a researcher defines spe-
cific values, the software develops a finite-element model of this geometry
consisting of 20-noded isoparametric elements. The fourth subsystem performs
incremental nonlinear finite element analysis on complex three-dimensional
structures under cyclic thermomechanical loading with temperature-dependent
material properties and material response behavior. A major advance in the
ability to perform time-dependent analyses is a dynamic time incrementing
strategy incorporated in this software. The fifth element, COSMO, is an
executive module that controls the whole system.

Liner Cyclic Life Testing

Through a cooperative effort, Pratt & Whitney and NASA Lewis Research Center
developed a unique vehicle to obtain cyclic thermal and mechanical test data
under realistic but controlled test conditions using annular combustor hard-
ware. Pratt & Whitney provided the test rig, while Lewis supplied the test
facility, integrated the rig into the facility, conducted tests, and analyzed
the data. The program initially tested a conventional liner of sheet metal,
seam-welded louver construction from Hastelloy-X material; later, the program
tested an advanced segmented liner made from materials developed by Pratt &
Whitney. The tests radiantly heated segments (cylindrical sections) of turbine
engine combustor liners. Quartz lamps provided cyclical heating of the test
liners. This caused axial and circumferential temperature variations as well
as through-the-wall temperature gradients in the test liner. The thermally
induced stresses and strains were similar to those of in-service liners. A
typical engine mission cycle (i.e., take-off, cruise, landing, and taxi) of

3 to 4 hr was simulated in 2 to 3 min. Based on nonlinear structural analyses
of the two liners, researchers determined that the critical stress-strain loca-
tion in the conventional liner was at the seam weld. For the advanced liner,
it was at the retention loop. For the same heat flux, the advanced liner will
have a much longer life than the conventional liner, because it has a lower
operational temperature (440 °F) and has no structural or hoop constraint in
the circumferential direction. The predicted life is greater than one million
cycles. There is good agreement between predicted life and measured life.

Substantiated Design Analysis Methods and Codes

An important goal in the structural analysis discipline was concerned with
developing user confidence in the models and codes discussed above. Confidence
comes with experimental validation. HOST allowed scientists to validate many
technologies: Time-varying thermomechanical load models, component-specific
automated geometric modeling and solution strategy capabilities, advanced
inelastic analysis methods, inelastic constitutive models, high-temperature
experimental techniques and experiments, and nonlinear structural analysis
codes. Under HOST, test facilities were upgraded, and codes in two major areas
were developed. We also conducted experiments to calibrate and validate the
codes. Unique high-temperature cyclic thermomechanical tests on tubular and
solid bar specimens were conducted in upgraded structures test laboratories at
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the Lewis Research Center. Categories for validation activities included:

(1) New types of multiaxial viscoplastic constitutive models for high-
temperature isotropic and anisotropic superalloys and metal matrix composites;
(2) nonlinear structural analysis methods and codes; and (3) uniaxial and
multiaxial thermomechanical databases for Rene N4, Rene 80, Hastelloy-X,
MAR-M247, B1900+Hf, PWA 1480, and Haynes 188.

FATIGUE AND FRACTURE

Prior to HOST work in fatigue and fracture, we had no confidence in life pre-
dictions involving complex loading conditions, multiaxial stress states, or
thermomechanical loading conditions until components had service experience.
Now we have far more confidence in constitutive equations and life models for
advanced configurations and materials under complex, multiaxial, and
thermomechanical loading circumstances. Five major accomplishments are
summarized below.

Crack Initiation Life-Prediction Methods

This is the first major fatigue-fracture work element. Two new crack-
initiation, life-prediction methods have been developed for application to
complex creep-fatigue loading of nominally isotropic superalloys at high
temperatures (at Pratt & Whitney and at Lewis). The Pratt work led to a new
method, called Cyclic Damage Accumulation (CDA), for predicting high-
temperature fatigue life. Under the Lewis program, the Strainrange Partition-
ing (SRP) method was advanced to allow researchers to express the approach in
terms of total strain range versus cyclic life.

Cyclic Constitutive Models - Protective Coatings and Single-Crystal Alloys

HOST efforts in this second fatigue-fracture concern developed and verified
cyclic constitutive models for oxidation protective coatings and for highly
anisotropic single~crystal turbine blade alloys. Pratt & Whitney formulated a
viscoplastic constitutive model for two fundamentally different coating types:
A plasma-sprayed NiCoCrAlY overlay coating and a pack-cementation-applied NiAl
diffusion coating. Pratt & Whitney also developed a unified constitutive model
for PWA 1480 single-crystal material; it is in the final development stages.

Pratt & Whitney is also the contractor proposing a model for a preliminary
cyclic crack initiation life-prediction model. It is being evaluated. The
model utilizes tensile hysteretic energy and frequency as primary variables.

Two High-Temperature, Cyclic Crack-Growth Life-Prediction Models

Two models have been proposed for the fourth fatigue and fracture work element.
Micromechanistic and phenomenological engineering approaches have been taken.
The micromechanistic approach, being developed by University of Syracuse
scientists, is based on oxidation interactions with mechanical deformation at
the crack tip. The engineering approach, at General Electric, has its origins
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in the Path-Independent Integrals approach, which describes the necessary
fracture mechanics parameters.

High-Temperature Fatigue and Structures Laboratory

Lewis Research Center created an advanced high-temperature fatigue and struc-
tures research laboratory. Test facilities have been significantly upgraded
to allow uniaxial, high cycle/low cycle, and axial torsional fatigue research.
Additionally, the laboratory contains a powerful computer facility that is
among the best in the world for this kind of effort.

The uniaxial test facility now includes twelve load frame systems. The origi-
nal eight frames are rated for +20 000 1b. Lewis added two more frames rated
at +20 000 1b and two at =50 000 1b. Commercially available,servocontrollers
control each test system. The test facility provides both diametral and axial
extensometers. Computer enhancements have had a major impact on the lab's
uniaxial capabilities because each uniaxial system has its own minicomputer for
experimental control and data acquisition. To further aid in simulating oper-
ating conditions, two machines allow tests to be conducted under two closely
controlled environmental conditions, high temperature and vacuum.

To improve our understanding of cumulative cyclic loadings, Lewis bolstered its
facility in this area as well. A new system produces arbitrary load or defor-
mation histories corresponding to fatigue lives up to 10 million in less than
10 hr, using state-of-the-art servohydraulic materials test systems.

The third type of test enhancement relates to multiaxial stress. The load
frames for each test system are rated for loads of +50 000 1lb axial and

+25 000 in.-1b torsional. These systems allow tests involving rapid thermal
transients. A number of experimental projects are currently underway. Thus
far the testing has been biaxialj eventually it will be triaxial.

The high-temperature fatigue and structures lab computer offers a versatile
system, with a .Data General Eclipse MV/4000 connected with 14 satellite
computers in a multiprocessor class of computing configuration. This config-
uration also introduced the first validated ADA-language compiler within NASA.

SURFACE PROTECTION

The surface protection subproject hosted two programs: Thermal barrier coating
life prediction and an airfoil deposition process/deposition model. These
programs are discussed below.

TBC Life Prediction

HOST provided pioneering research on thermal barrier coatings (TBC) involving
three approaches to TBC life-prediction modeling. Lewis Research Center,
Pratt & Whitney, Garrett, and General Electric worked on this modeling effort.
The state-of-the-art coating system consists of about 0.25 mm of zirconia-
yttria ceramic over 0.13 mm of an MCrAlY alloy bond coat. Both layers are

3-319



applied by plasma spraying onto a structural base material. Benefits arise
from thermal insulation of the structure that is provided by the ceramic layer.

Following an in-house model development program, Lewis awarded contracts
(1) to determine thermomechanical properties, (2) to analyze coating stresses
and strains, and (3) to develop life models for thermal barrier coatings.

Thermomechanical properties. - The effort to determine thermomechanical
properties achieved general agreement that (1) these coatings fail primarily
because of stresses induced by the thermal expansion mismatch between ceramic
and metallic base layers and (2) that these stresses are greatly influenced by
time-at-temperature processes - oxidation and possibly sintering.

Analyze coating stresses and strains. - Next researchers developed a
laboratory model. This model represented a first step, but it was not in a
form useful to engine designers. ‘

Develop life models. - The model developed by Pratt & Whitney and its
subcontractor, Southwest Research, is a fatigue-based coating life model. The
model is accurate to plus or minus a factor of three, which is acceptable. The
Garrett model considers bond coat oxidation, zirconia toughness reduction, and
damage due to molten salt deposits. This model analyzes thermal data for spe-
cific elements in terms of mission. The General Electric model employs time-
dependent, nonlinear, finite-element modeling of stresses and strains present
in the thermal barrier coating system, followed by correlation of these
stresses and strains with test lives. This model was the only one to check
failure induced by edges and, hence, the only one to consider shear strain.

Airfoil Deposition Process/Model

This activity raised fundamental questions about hot corrosion of blades and
about deposition of corrosive salts. Scientists needed to identify what
corrosive species and deposits were accumulating, how deposits reached the
blade, and then what effect they had on the surface protection. Through HOST,
researchers identified the corrosive as sodium sulfate, but they also learned
from process studies that prior to reaching the blade it was not yet sodium
sulfate (it was sodium carriers, sulfate carriers, etc.). People had been
performing static studies, but research results in this area indicated that
dynamic studies were needed. The reason was that in real-life situations the
sodium sulfate supply continually accumulates and then, because of heat,
becomes molten, creating a film that flows on the blade surface. The result
is that salt deposition and flow rates are variable, prompting the need for a
deposition model.

The deposition model that Lewis researchers developed assumes that the sodium-
sulfate dissolution rate correlates with corrosion rate. This was the first
attempt to correlate the process - initial corrosive species diffusing, moving,
depositing, forming, filming, dissolving metal, and starting the corrosive
effect. Researchers completed the model; however, funding limitations pre-
vented validation experiments. This model is a significant step toward
reality - modeling a real-life, dynamic environment.
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BROAD IMPACT OF HOST PROJECT

The HOST Project met all the objectives in the NASA long-range aeronautics
plan, including

(1) Recognition of the importance of NASA Aeronautics to both civil and
military aviation. Ivan Bush stated before his recent retirement from the

_ AFAPL, "The Air Force looks to the HOST Project for the technology required in

advanced fighters."

(2) Providing the U.S. with improved capability for research and technol-
ogy. State-of-the-art test facilities have been built at Lewis and at certain
universities. Lewis has established an international leadership in constitu-
tive modeling of materials behavior under complex thermomechanical loading.

(3) Restoring a balanced aeropropulsion program between performance
improvement and durability (e.g., EEE, ATP, QCSEE Programs versus HOST).

(4) Strengthening the NASA-university partnership in aeronautics research
and technology. The HOST Project initiated 13 direct grants and approximately
26 indirect grants through industry. Also, Robert Henderson from the AFAPL
stated "HOST improved the relationship between the government (NASA and the
Air Force) and universities."

(5) Strengthening user interfaces to promote technology transfer. The
HOST Project was responsible for 250 technical publications including six NASA
Conference Publications, six major workshops and numerous miniworkshops, and
dedicated HOST sessions at AIAA and ASME society meetings.

The HOST Project spearheaded a change from the traditional 'build 'em and

bust 'em" approach to turbine engine development to analytical predictions made
before building hardware. These predictions were based on improved and more
accurate mathematical models, computer codes, and broad experimental databases.
Some results from this change in approach include |

(1) Improved durability in advanced hot sections
(2) Reduced development time and costs N
(3) More accurate trade-off between performance and durability

Research supported and focused by HOST improved quantitative accuracy to pre-
dict physical behavior of hot section parts under complex cyclic loading. The
project efforts

(1) Developed better understanding and modeled more accurately basic phys-
ics of durability phenomena

(2) Emphasized local as well as global conditions and responses

(3) Accommodated nonlinear and inelastic behavior

(4) Expanded some models from two to three dimensions
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RESEARCH SENSORS

David R. Englund
Instrumentation and Control Technology Office
NASA Lewis Research Center

ABSTRACT

The work described here is part of a program (Englund and Seasholtz, 1988) to
develop sensors and sensing techniques for research applications on aircraft
turbine engines. In general, the sensors are used to measure the environment
at a given location within a turbine engine or to measure the response of an
engine component to the imposed environment. Locations of concern are gen-
erally in the gas path and, for the most part, are within the hot section.
Specific parameters of concern are dynamic gas temperature, heat flux, airfoil
surface temperature, and strain on airfoils and combustor liners. To minimize
the intrusiveness of surface-mounted sensors, a considerable effort has been
expended to develop thin-film sensors for surface temperature, strain, and heat
flux measurements. In addition, an optical system for viewing the interior of
an operating combustor has been developed. Most of the work described is
sufficiently advanced that sensors have been used and useful data have been
obtained. The notable exception is the work to develop a high-temperature
static strain measuring capability; this work is still in progress. The work
described here has been done at NASA Lewis Research Center and at other insti-
tutions, under various contracts and grants.
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HIGH-TEMPERATURE INSTRUMENTATION FOR HOT SECTION APPLICATIONS

The work described here is part of a program to develop instrumentation for
research applications on aircraft turbine engines. In general, the instrumen-
tation is used to either measure the environment at a given location within a
turbine engine or to measure the response of an engine component to the imposed
environment. Locations of concern are generally within the gas path and, for
the most part, are within the hot section of the engine. Since this instrumen-
tation is used for research testing as opposed to operational use, a sensor
lifetime of the order of 50 hr is considered sufficient. The work described
here was done at NASA Research Center and at various other institutions, under
various contracts and grants.

INSTRUMENTATION FOR RESEARCH MEASUREMENTS ON AEROPROPULSION SYSTEMS:

e DYNAMIC GAS TEMPERATURE MEASURING SYSTEMS
e COMBUSTOR VIEWING SYSTEM

e HEAT FLUX SENSORS

 THIN-FILM SENSORS

 HIGH-TEMPERATURE STRAIN MEASURING SYSTEMS
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DYNAMIC GAS TEMPERATURE MEASURING SYSTEM

One of the most important environmental parameters in a turbine engine hot sec-
tion is gas temperature. Normally only time-average temperature is measured.
Fluctuations in gas temperature are, however, of great concern for hot sec-
tion durability and combustor modeling activities. In this measuring system
(Elmore et al., 1983, 1984, 1986a, and 1986b; and Stocks and Elmore, 1986), a
probe with two wire thermocouples of different diameters provides dynamic sig-
nals with limited frequency response. Comparing these signals over a range of
frequencies makes it possible to generate a compensation spectrum sufficient

to provide compensated temperature data at frequencies up to 1000 Hz.

e MEASURES GAS TEMPERATURE
FLUCTUATIONS AT THE EXIT OF A
TURBINE ENGINE COMBUSTOR

e A TWO-ELEMENT PROBE PROVIDES
DATA TO PERMIT ACCURATE
FREQUENCY COMPENSATION

N CD-87-29397
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DYNAMIC GAS TEMPERATURE MEASUREMENT

This figure shows dynamic gas temperature data obtained from a probe at the
turbine inlet of a PWA F-100 engine operating at an intermediate power setting
with an average turbine inlet gas temperature of 1700 °F. The plot on the left
is the dynamic signal from a 0.003-in.-diameter wire thermocouple with no fre-
quency compensation. The rms value of the temperature fluctuation is 74 °F.
The plot on the right is the compensated signal from the same thermocouple.

The rms value of the temperature fluctuation is 390 °F and the peak-to-peak
fluctuation is +900 °F. Such a large temperature fluctuation implies that
there are filaments of primary combustion gas and dilution gas within the com-
bustor exhaust stream.

TEMPERATURE AT TURBINE INLET
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The Combustor Viewing System (Morey, 1984 and 1985) was designed to provide
recorded images of the interior of a combustor during operation; the objective
was to produce a visual record of some of the causes of premature hot section
failure. The system consists of a water-cooled optical probe (shown below), a
probe actuator, an optical interface unit that couples the probe to cameras
and to an illumination source, and system controls. The probe is 0.5 in. in
diameter, small enough to fit into an igniter port. The actuator provides
+180° of rotation and radial insertion of up to 3 in. Both wide and narrow
fields of view and different viewing axes are provided from two different
probes. The probes are water cooled and gas purged and can operate within the
primary combustion zone of a combustor.

WATER-COOLED
OPTICAL PROBE—
\

CD-88-32748
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HEAT FLUX SENSORS

An environmental parameter of interest for hot section durability is heat flux.
We have developed miniature heat flux sensors which can be welded into combus-
tor liners (Atkinson and Strange, 1982; and Atkinson et al., 1983) and built
into cooled turbine airfoils (Atkinson et al., 1984). This figure shows one
sensor configuration based on the Gardon gage design. An innovation in these
sensors is the use of the burner liner or airfoil material as part of a differ-
ential thermocouple circuit. Calibration tests (Atkinson and Strange, 1982;
and Holanda, 1984) on these materials showed that this technique could provide
acceptable signals. The differential thermocouple simplifies construction and
permits a direct measurement of the differential temperature proportional to
heat flux. These miniature heat flux sensors must be calibrated over the
temperature range in which they will be used.

* MEASURE HEAT FLUX ON BURNER HIGH-TEMPERATURE HEAT FLUX SENSOR

LINERS AND TURBINE AIRFOILS

* MINIATURE WIRE THERMOCOUPLE \\ ¥ CERAMIC INSULATION
SENSOR:

WELD INTO BURNER LINERS
BUILD INTO AIRFOILS

* SENSOR BODY PART OF
THERMOCOUPLE CIRCUIT

* CALIBRATION SYSTEM REQUIRED

““ ALUMEL
- CHROMEL

-~ BLADE WALL

CD--88-32749
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COMBUSTOR SEGMENT INSTRUMENTED WITH HEAT FLUX SENSORS

This photograph shows a segment of a combustor liner which has been instru-
mented with six heat flux sensors. The sensors are 0.3-in.-diameter disks with
thermocouple leads radiating from the edge of the disk. The actual sensor part
of the unit is at the center of the disk and is only 0.06 in. in diameter.

The sensors are individually calibrated and then welded into holes cut in the
liner. Tests on combustors such as this one have produced useful heat flux
data over a range of combustor operating conditions (Atkinson et al., 1985a).
Similar sensors built into turbine airfoils have been less successful because
of the sensitivity of these sensors to temperature or heat flux gradients,
which are more prevalent in turbine airfoils (Atkinson et al., 1985b). Sensor
designs that are less sensitive to gradients have been examined but have not
yet been put into use.

ORIGINAL PAGE IS
OFPOOR(MLHJTY
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THIN-FILM THERMOCOUPLES

Lewis has been the major advocate and sponsor for development of thin-film
sensors for turbine engine applications. Sensors applicable to turbine
engines include temperature sensors, strain gages, and heat flux sensors.
Thin-film thermocouples for measuring the surface temperature of a cooled tur-
bine airfoil are shown here. The surface of the vane is covered with Al703
thermally grown from an anticorrosion coating and augmented with sputtered
Al903. Platinum and Pt-Rh films are sputter deposited with thermocouple junc-
tions formed by overlapping the two films at the desired spot. The films
extend to the base of the vane where leadwires are connected. The sensor is
less than 0.001 in. thick. The advantage of this technique over the previous
technology, which required swaged thermocouple wires to be buried into grooves
cut into the surface, should be obvious. This technology has been developed
(Grant and Przybyszewski, 1980, and Grant et al., 1981 and 1982) for turbine
airfoil temperature measurement. Further work has been directed at other sen-
sor types, other sensor and substrate materials, and maturing the technology
(Grant et al., 1983; Kreider et al., 1984; Kreider and Semancik, 1985; Prakash
et al., 1985; and Budhani et al., 1986a and 1986b).

e MEASURE SURFACE TEMPERATURE
OF COOLED TURBINE AIRFOILS

e FABRICATION: SPUTTER ALLOY
FILM LEADS OVER INSULATING
COATING ON AIRFOIL SURFACE

e SENSOR THICKNESS, <0.001 in.

CD-88-32751
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HIGH-TEMPERATURE STRAIN MEASURING SYSTEMS

The most ambitious goal of the research sensor program is development of high-
temperature (1800 °F) strain measuring systems. Approaches being followed in
this work include both wire and thin-film resistance strain gages and remote
measuring systems. Our resistance strain gage work has included work on new
strain gage materials (Hulse et al., 1985 and 1987a; and Lei, 1987) and test-
ing of available strain gages, including the Chinese 700 °C gages (Hobart,
1985; Stetson, 1984; and Hulse et al., 1987b). Work on remote strain measuring
systems has involved three different system concepts based on laser speckle
patterns (Stetson, 1983; and Lant and Qaqish, 1987a and 1987b).

e GOAL:

MEASURE STATIC STRAIN ON TEST SAMPLES AND TURBINE ENGINE COMPONENTS AT
TEMPERATURES UP TO 1800 °F

o APPROACHES:

RESISTANCE STRAIN GAGES—
WIRE GAGES
THIN-FILM GAGES

REMOTE STRAIN MEASURING SYSTEM—
LASER SPECKLE BASED SYSTEM
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FUTURE THRUSTS IN RESEARCH SENSORS

Future work in research sensors will be strongly influenced by new materials
being developed for turbine engine components. These materials are expected
to be in the forms of metal and ceramic matrix composites. Both the nature of
the materials and the significantly higher hot section temperatures that these
materials are expected to make possible will influence our sensor work. If
thin-film sensors are to be applied to these materials, methods for producing
suitable insulating films must be developed. As surface temperatures rise,
the temperature limits of available sensor materials will force more emphasis
on remote, noncontact sensing techniques. In addition, we will continue to
search for new sensor materials with higher temperature capabilities. Work
has already started in these directions relative to surface temperature,
strain, and heat flux measurements on ceramic and ceramic matrix composite
materials.

MAJOR DRIVER:
e PROGRAM TO DEVELOP MATERIALS TO OPERATE AT SIGNIFICANTLY HIGHER HOT
SECTION TEMPERATURES—METAL- AND CERAMIC-MATRIX COMPOSITES

EFFECT ON SENSOR PROGRAMS:

 DEVELOP TECHNOLOGY FOR THIN-FILM SENSORS ON NEW SUBSTRATE MATERIALS
o DEVELOP SENSOR MATERIALS FOR HIGHER TEMPERATURE RANGES
* IMPROVE REMOTE SENSING TECHNIQUES
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HOST COMBUSTION R&T OVERVIEW

Raymond E. Gaugler and James D. Holdeman
Internal Fluid Mechanics Division
NASA Lewis Research Center

ABSTRACT

The overall objective of the Turbine Engine Hot Section Technology Combustion
Project was to develop and verify improved and more accurate numerical models
of the internal combustor flow field and liner heat transfer as a means to
shorten combustor development time and increase turbine engine hot section
life.

The objective was approached from two directions: computational and experimen-
tal. On the computational side, a contracted effort was initiated during fis-
cal year 1982 to assess and evaluate existing combustor aerothermal analysis
models. This effort has quantified the strengths and deficiencies of existing
models. Next, phase II contracts were let in fiscal 1984 to develop new and
improved numerical methods for analyzing turbulent viscous recirculating flows,
with the prime objectives being improved accuracy and speed of convergence.

On the experimental side, three types of experiments can be identified: first,
fundamental experiments directed toward an improved understanding of the flow
physics and chemistry; second, experiments run to provide data for the empiri-
cal modeling of complex phenomena; and third, benchmark experiments for com-—
puter code validation.

Four experimental efforts have been completed and three are nearing completion.

The completed experimental programs were aimed primarily at obtaining a basic
understanding of the flows and improving the empirical models. Two programs

that concentrated on the interaction of dilution jets and the main stream flow

field have added substantially to the understanding of such flows. A third
experimental program examined in detail the mass and momentum transport in

swirling and nonswirling coaxial jets. The fourth effort was an investigation

of the radiative heat loading in an advanced, high-pressure gas turbine combus-

tor. The three experimental programs in progress concentrate on generating

benchmark quality data for use in validating new computer codes and models. |
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COMBUSTOR FLOW PHENOMENA

The goal of gas turbine combustion system design and development was to obtain
an acceptable solution to the conflicting design trade-offs between combustion
efficiency, gaseous emissions, smoke, ignition, restart, lean blowout, burner
exit temperature quality, structural durability, and life cycle cost. For many
years, these combustor design trade-offs have been carried out with the help
of fundamental reasoning and extensive component and bench testing, backed by
empirical and experience correlations. The ultimate goal has been to develop
a reliable combustor design system that can provide quantitatively accurate
predictions of the complex combustion flow-field characteristics in order to
achieve an optimum combustion system design within reasonable cost and sched-
ule constraints.
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HOT SECTION TECHNOLOGY (HOST) COMBUSTION SUBPROJECT

The overall objective of the HOST Combustion Project was to develop and verify
advanced analytical methods to improve the capability of designing combus-
tion systems for advanced aircraft gas turbine engines. This objective was
approached both computationally and experimentally.

Computationally, HOST first sponsored studies to assess and evaluate the capa-
bilities of existing aerothermal models (circa 1982). Based on the results of
these assessments and other studies in the literature, HOST supported several

studies to develop new and improved numerical methods for the analysis cf tur-

.

bulent viscous recirculating flows, with emphasis on accuracy and speed of
solution.

The objectives of HOST-sponsored experimental studies were to improve under-
standing of the flow physics and chemistry in constituent flows, and to obtain
fully specified, benchmark-quality experimental data suitable for the assess-—
ment of the capabilities of advanced computational codes.

APPROACH

COMPUTATIONAL

o ASSESS EXISTING AEROTHERMAL CODES AND NUMERICAL METHODS
« DEVELOP NEW AND IMPROVED NUMERICAL METHODS
« INCORPORATE IMPROVED PHYSICAL MODELS INTO CODES

EXPERIMENTAL

o FUNDAMENTAL TESTS TO IMPROVE UNDERSTANDING OF FLOW PHYSICS
« EMPIRICAL MODELING OF COMPLEX PHENOMENA
« BENCHMARK TESTS FOR CODE VERIFICATION

CD-88-3229%4
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AEROTHERMAL MODELING PHASE I

ics, turbulence/chemistry interaction, spray dynamics, evaporation/combustion,
radiation, and soot formation and oxidation. An extensive assessment of numer-—
ics, physical submodels, and the suitability of the available data was made

by three contractors under Phase 1 of the HOST Aerothermal Modeling program
(Kenworthy et al., 1983; Sturgess, 1983; Srinivasan et al., (1983a, 1983b).
These investigations surveyed and assessed current models and identified model
deficiencies through comparison between calculated and measured quantities.
Results of the assessment by Srinivasan et al. (1983a, 1983b) are summarized
by Mongia et al. (1986). The constituent flows examined included: (1) simple
flows with no streamline curvature (2) complex flows without swirl, and (3)
complex flows with swirl.

The major conclusion in the HOST Aerothermal Modeling Phase I assessment stud-
ies by Kenworthy et al. (1983), Sturgess (1983), and Srinivasan et al. (1983a,
1983b) was that the available computational fluid dynamics (CFD) codes pro-
vided a useful combustor design tool. Although significant advances have

been made in the development and validation of multidimensional gas turbine
combustion calculation procedures, the codes assessed were only qualitatively
accurate, especially for complex three~dimensional flows. Further work was
clearly needed. It was concluded that both a significantly improved numerical
scheme and fully specified experimental data (i.e. both mean and turbulence
flow-field quantities, with measured boundary conditions) for complex non-

physical submodels of turbulence, chemistry, sprays, turbulence/chemistry
interactions, soot formation/oxidation, radiation, and heat transfer could be
properly assessed.

OBJECTIVE:

* ASSESS PREDICTIVE ACCURACY OF AND DEFICIENCIES IN CURRENT COMBUSTOR
AEROTHERMAL MODELS

* RECOMMEND MODEL IMPROVEMENTS

RESULTS:

* CURRENT CALCULATIONS ARE OF QUALITATIVE ACCURACY ONLY
* GOOD BENCHMARK EXPERIMENTS ARE LACKING

RECOMMENDATIONS:

* IMPROVE 3-D NUMERICAL SCHEMES
— GRIDS
— ACCURACY
— SPEED
* IMPROVE MODELS
— TURBULENCE
— CHEMISTRY
* GENERATE RELEVANT BENCHMARK DATA

CD 8832295
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AEROTHERMAL MODELING PHASE II

Based on the recommendations of the Phase I assessment studies, activities in
Phase II of the HOST Aerothermal Modeling program concentrated on developing
improved numerical schemes, and collecting completely specified data for nonre-
acting single and two-phase swirling and nonswirling flows.

The hybrid finite differencing scheme employed in generally available combus-
tor codes gives excessive numerical diffusion errors that preclude accurate
quantitative calculations. In response to this deficiency, HOST supported
three programs with the primary objective being to identify, assess, and imple-
ment improved solution algorithms applicable to analysis of turbulent viscous
recirculating flows. Both solution accuracy and solution efficiency were
addressed (Turbine Engine Hot Section Technology, 1985, 1986, 1987; Turan and
VanDoormal, 1987).

One scheme, named CONDIF (Controlled Numerical Diffusion with Internal Feed-
back) (Runchal et al., 1987) has unconditionally positive coefficients and
still maintains the essential features of central differencing and its second-
order accuracy.

Another advanced numerical scheme, called flux spline (Patankar et al., 1987)
is based on a linear variation of total flux (convection + diffusion between

two grid points). This is an improvement over the assumption of uniform flux
used in hybrid schemes, and leads to reduced numerical diffusion.

Other advanced schemes (Turbine Engine Hot Section Technology, 1985, 1986,
1987; Vanka, 1987), such as block correction techniques and direct sclution of
the coupled equations, have been proposed. Calculations with the latter, cou-
pled with the flux spline technique, have shown a speed increase by a factor
of 15 for a calculation of turbulent flow over a backward-facing step (Mongia,
1987).

OBJECTIVE:
e IMPROVE ACCURACY AND CONVERGENCE SPEED OF COMBUSTOR FLOW
COMPUTER CODES

APPROACH:
e EVALUATE NEW TECHNIQUES
— FLUX SPLINE
— DIRECT SOLUTION
— CONTROLLED NUMERICAL DIFFUSION WITH INTERNAL FEEDBACK (CONDIF)
— COMPACT IMPLICIT METHODS
— COUPLED MOMENTUM AND CONTINUITY EQUATIONS

RESULTS:

* RESULTS INDICATE POTENTIALLY SIGNIFICANT IMPROVEMENTS IN ACCURACY AND
SPEED COMPARED WITH PREVIOUS METHODS

CD--88-32296
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EXPERIMENTS AND MODELING OF DILUTION JET FLOW FIELDS

Considerations in designing or tailoring temperature patterns at the exit of
gas—turbine combustion chambers, necessary to maximize engine power and life,
have motivated several studies of the thermal mixing characteristics of multi-
ple jets injected into a confined crossflow (Holdeman et al., 1984, Holdeman
and Srinivasan, 1986, Holdeman et al., 1987a, Holdeman et al., 1987b).

The objectives of these studies were to (1) identify the dominant physical

mechanisms governing the mixing (2) develop and extend empirical models for

use as a near-term combustor design tool, and (3) provide a data base for the
| assessment and verification of three-dimensional numerical codes.

NUMERICAL
EXPERIMENTAL EMPIRICAL 32x29x21 Pr = 0,2

SN N\
_ ——MEASUREMENT

PLANE TEMPERATURE

SIDE VIEW
FLOW CONDITION:

AAANAARNANRNRNRRANRANRARRANARRNN MOMENTUM FLUX RATIO = 25,5
ORIFICE SPACING = 0.5 H,
MEASUREMENT PLANE = 0.5 H,

OBJECTIVES :

® [DENTIFY THE DOMINANT PHYSICAL MECHANISMS
GOVERNING DILUTION JET MIXING

® EXTEND EMPIRICAL MODELS TO PROVIDE A NEAR-
TERM PREDICTIVE CAPABILITY

T e ® DEVELOP AND COMPARE NUMERICAL CODES
MMM EEESEEEEEESRy WITH DATA TO GUIDE FUTURE ANALYSIS
| IMPROVEMENT EFFORTS

TOP VIEW
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MASS AND MOMENTUM TRANSPORT EXPERIMENTS
The objective of this work was to obtain data for the evaluation and improve-
ment of turbulent transport models for axial and swirling coaxial jets. Laser
velocimeter and laser-induced fluorescence techniques were used to measure

mass and momentum transport.

Extensive data were generated for mean and fluctuating axial velocities, turbu-
lence dissipation rate, and integral- and micro-turbulence length scales.

WATER TUNNEL EXPERIMENT SECTION A-A

Ciial

OUTER FLOW

INNER FLOW

OBJECTIVE

OBTAIN DETAILED DATA FOR ASSESSING CURRENT TURBULENCE MODELING CAPABILITY AND
PROVIDE INFORMATION FOR ADVANCED CONCEPTS IN EDDY MASS & MOMENTUM TRANSFER

APPROACH

EXPERIMENTALLY INVESTIGATE TURBULENT MIXING IN CONFINED COAXIAL JET USING LASER-
INDUCED FLUORESCENCE AND LASER DOPPLER VELOCIMETER DIAGNOSTICS

LST '88 CD-88-32298
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FLOW INTERACTION EXPERIMENT

Another study in progress will obtain comprehensive mean and turbulence meas-
urements of velocity and species concentration in a three—dimensional flow
model of the primary zone of gas turbine combustion chambers (Turbine Engine
Hot Section Technology, 1985, 1986, 1987). The flow field of interest is

the interaction between swirling flow and lateral jets in a rectangular chan-
nel. The mainstream flow enters through 5 swirlers with the transverse jets
injected from both the top and bottom duct walls with either 2 or 4 jets per
swirler at 1/2 or 1 channel height downstream from the swirler.

These experiments are being conducted on both air and water multiple-swirler
rigs, as well as single-swirler and swirling-jet rigs. Fifteen cases (combina-—
tions of swirl, jet strength and location) are under test using laser sheet
light and dye water flow visualization. Detailed velocity and scaler mean and
turbulence LDV measurements are being made in the air rig.

A key feature of this program is the comparison of model calculations with

the data obtained to ensure that the data are complete and consistent, and
that they satisfy the boundary condition input requirements of current three—
dimensional codes. Before the experiments were begun, calculations were per-
formed using a three-dimensional code (Srivatsa, 1980) for all test cases. As
the data are obtained, they are compared with both previous and advanced model
calculations.
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FUEL-INJECTOR/AIR-SWIRL CHARACTERIZATION

The objective of this study is to obtain fully specified mean and turbulence
measurements of both gas and droplet phases downstream of a fuel injector and
air swirler that are typical of those used in gas turbine combustion chambers.

The flow field of interest is an axisymmetric particle-laden jet flow with and
without confinement and co-annular swirling airflow. Approximately 30 cases
are under test with both glass-bead, particle-laden jets and liquid sprays,
with various combinations of swirl strengths and confinement (Turbine Engine
Hot Section Technology, 1985, 1986, 1987). Measurements of mean and tur-
bulence quantities for both gas and solid phases are being made using a 2-
component Phase/Doppler LDV particle analyzer (McDonell et al., 1987).

The comprehensive experimental data generated in these programs will be

used to validate advanced models of turbulence, scalar, and spray transport,

including two-equation turbulence models, algebraic and differential Reynolds
stress models, scalar and scalar-velocity transport models, and Eulerian and

Lagrangian deterministic and stochastic spray models.

OBJECTIVE:

* BENCHMARK DATA ON FUEL SPRAY—SWIRLING FLOW INTERACTIONS
* VALIDATE CURRENT & ADVANCED 2-PHASE MODELS

APPROACH:

* DESIGN 2-PHASE, ISOTHERMAL EXPERIMENT WITH GUIDANCE FROM CURRENT
COMPUTATIONAL TOOLS

* MAP FLOW USING 2-COMPONENT PHASE/DOPPLER SYSTEM

* VALIDATE NEWEST MODELS

CD- 88-012300
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REVIEW AND ASSESSMENT OF THE HOST TURBINE HEAT TRANSFER PROGRAM

Herbert J. Gladden
Internal Fluid Mechanics Division
NASA Lewis Research Center

ABSTRACT

The objectives of the HOST Turbine Heat Transfer subproject were to obtain a
better understanding of the physics of the aerothermodynamic phenomena occur-
ring in high-performance gas turbine engines and to assess and improve the
analytical methods used to predict the fluid dynamics and heat transfer phenom-
ena. At the time the HOST project was initiated, an across-the-board improve-
ment in turbine design technology was needed. Therefore, a building-block
approach was utilized, with research ranging from the study of fundamental
phenomena and analytical modeling to experiments in simulated real-engine envi-
ronments. Experimental research accounted for 75 percent of the project, and
analytical efforts accounted for approximately 25 percent. Extensive experi-
mental datasets were created depicting the three-dimensional flow field, high
free-stream turbulence, boundary-layer transition, blade tip region heat trans-
fer, film cooling effects in a simulated engine environment, rough-wall cooling
enhancement in a rotating passage, and rotor-stator interaction effects. In
addition, analytical modeling of these phenomena was initiated using boundary-
layer assumptions as well as Navier-Stokes solutions.
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TURBINE HEAT TRANSFER PROGRAM

In the multidisciplinary HOST Project each participating discipline selected
its own objective based on the greatest need in that particular area, rather
than some common interdisciplinary goal. In Turbine Heat Transfer it was
decided, based on evaluations of the type performed by Stepka (1980), that an
across-the-board improvement in turbine heat transfer technology was needed.

A ratcheting up of the overall technology, a moving from a correlation base to
a more analytical base, was identified as the Turbine Heat Transfer Subproject
goal. It was also identified that the existing data base was insufficient to
support this movement and that increasing both the size and quality of the data
base was essential. It was further recognized that HOST alone could not
achieve this goal. It was hoped that HOST could be a sufficient catalyst and
provide a sufficient forum to make this goal one that all of the partners -
government, industry, and universities - would find obtainable and worth

pursuing.

Objectives

* OBTAIN A BETTER UNDERSTANDING OF THE PHYSICS OF THE AEROTHERMODYNAMIC
PHENOMENA OCCURRING IN HIGH-PERFORMANCE TURBINES

* ASSESS AND IMPROVE THE ANALYTICAL METHODS USED TO PREDICT THE FLOW AND
HEAT TRANSFER IN HIGH-PERFORMANCE TURBINES

CD-88-32349

3-350




RESEARCH APPROACH ‘

The research program of the Turbine Heat Transfer Subproject was based on the
idea that an across—the-board improvement in turbine design was needed. It was
also based on an overall philosophy at NASA Lewis Research Center of taking a
building block approach to turbine heat transfer. The research for this pro-
gram ranged from the study of fundamental phenomena and analytical modeling to
experiments in real engine environments. Both experimental and analytical
research were conducted.

REAL REAL
WORLD ENVIRONMENT
RIGS OR ENGINES
CODE

HIGH SPEED WARM VERIFICATION
ROTATION/ TURBINE, BLOW-DOWN
UNSTEADY TURBINE, LARGE LOW
SPEED TURBINE

CODE

AIRFOIL STATIC CASCADES - COLD DEVELOPMENT
SPECIFIC ANNULAR AND WARM ANNULAR

FUNDAMENTAL WIND TUNNELS AND FUNDAMENTAL MODELS ANALYTIC

PHENOMENA OF TRANSITION, TURBULENCE, FILM MODEL ING
COOLING, WALL SHEAR s
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PHYSICAL PHENOMENA INVESTIGATED

The range of phenomena addressed in the Turbine Heat Transfer Subproject are
identified by numbers and arrows on the following figure. One can see from
this figure that the Turbine Heat Transfer Subproject covered most of the key
heat transfer points on the turbine airfoil: film-cooled airfoils, passage
curvature, endwall flows, transitioning blade boundary layers, tip regions,
and free-stream turbulence on the external surfaces. The subproject included
impingement and turbulated serpentine passages on the internal surfaces. In
addition, the program broke some new ground. An experiment was conducted
which obtained heat transfer data on the surfaces of the airfoils in a large,
low-speed one and one-half stage rotating turbine. Another experiment
acquired data on the internal turbulated serpentine passages subject to
rotation at engine condition levels. Finally, vane heat transfer data were
acquired in a real engine type environment behind an actual operating
combustor.
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STATOR-AIRFOIL HEAT TRANSFER CF POCR QUALITY,

One of the initial research efforts was the stator-airfoil heat transfer pro-
gram performed at the Allison Gas Turbine Division (Nealy et al., 1983; Hylton
et al., 1983; Hylton et al., 1988; Nealy et al., 1984; Turner et al., 1985;
Yang et al., 1985). This research consisted of determining the effects of
Reynolds number, turbulence level, Mach number, temperature ratio, accelera-
tion, and boundary-layer transition on heat transfer coefficients for various
airfoil geometries at simulated engine conditions. This research was conducted
for non-film-cooled airfoils, showerhead film-cooled designs and showerhead
"gill-region" film cooling concepts. Typical results of this research are
shown in the following figure. A typical cascade configuration is shown in

the photograph (fig. (a)). Two-dimensional midspan heat transfer coefficients
and static pressure distributions were measured on the central airfoil of the
three-vane cascade. Non-film-cooled data are shown in figure (b), where the
boundary-layer transition is clearly identified as a function of Reynolds
number on the suction surface. Figure (c) shows the effect on heat transfer

in the downstream recovery region to the addition of showerhead film cooling.
Data are presented as Stanton number reductions. A detrimental effect is noted
in the boundary-layer transition region of the suction surface to the addition
mass at the lesuing edge. Figure (d) shows a strong dependence on 'gill-
region" film co: ing, which is consistent with experience. However, when com-
bining showerhead with ''gill-region'" film cooling, more mass addition is not
always better as indicated by the Stanton number reduction data on the pres-
sure surface. This is a very extensive dataset which systematically shows the
important effects of modern film cooling schemes on modern airfoils. It went
beyond the traditional effectiveness correlations to provide actual heat trans-
fer data. It should provide a valuable baseline for emerging analysis codes.

(A) THREE-VANE CASCADE (B) NONFILM-COOLED AIRFOIL HEAT
TRANSFER COEFFICIENTS
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(C) INFLUENCE OF LEADING EDGE FILM-
COOLING ON HEAT TRANSFER
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TREAM FILM-COOLING
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THREE-DIMENSIONAL FLOW FIELD IN CURVED PASSAGES

An investigation of secondary flow phenomena in a 90° curved duct was conducted
at the University of Tennessee Space Institute (Crawford et al., 1985). The
curved duct was used to represent airfoil passage curvature without the com-
plexity of the horseshoe vortex. These data consist of simultaneous three-
dimensional mean value and fluctuating components of velocity through the duct,
and they compliment similar data in the literature. A schematic of the test
facility and the three-dimensional laser velocimeter are shown in the following
figure. The first phase of the research examined flows with a relatively thin
inlet boundary layer and low free-stream turbulence. The second phase studied
a thicker inlet boundary layer and higher free-stream turbulence. Typical
experimental results of this research are also shown in this figure. The vec-
tor plot of cross-flow velocities clearly shows the development of a vortex in
the duct corner near the low pressure surface. The University of Tennessee
Space Institute also developed a three-dimensional viscous flow analysis capa-
bility for the curved duct experiment utilizing the P.D. Thomas code (Thomas,
1979) as a base. Some analytical results from this code are shown where a vec-
tor plot of the cross-flow velocities is compared with the experiment. In
addition, a stream sheet is shown as it propagates through the duct and is
twisted and stretched. Additional comparisons of analysis and experiment show
that the thin turbulent boundary-layer results of this experiment are difficult
to calculate with current turbulence models.
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HEAT TRANSFER COEFFICIENTS IN REAL-ENGINE ENVIRONMENT

Two experiments were also conducted at NASA Lewis in the high-pressure facility
(Gladden et al., 1985; Gladden and Proctor, 1985; Gladden et al., 1987;
Hippensteele et al., 1985). This facility was capable of testing a full-sized
single-stage turbine at simulated real-engine conditions. The tests, however,
were limited to combined combustor-stator experiments. One experiment examined
full-coverage film-cooled stator airfoils, whereas the second experiment uti-
lized some of the advanced instrumentation developed under the instrumentation
subproject. A comparison of experimental airfoil temperatures with tempera-
tures obtained from a typical design system showed substantial differences for
the full-coverage, film-cooled airfoils and suggests that models derived from
low-temperature experiments are inadequate for real-engine conditions. The
advanced instrumentation tests demonstrated the capability and the challenges
of measuring heat flux and time-resolved gas temperature fluctuation in a real-
engine environment.

Typical results are shown in the following figure for thin film thermocouples.

The dynamic gas temperature probe tested a simulated real-engine condition. A

comparison is made between steady state heat flux measurements and those deter-
mined from dynamic signal analysis techniques.
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HIGH FREE-STREAM TURBULENCE EFFECTS

Stanford University has conducted a systematic study of the physical
phenomena that affect heat transfer in turbine airfoil passages. Their recent
experimental research has been concerned with high free-stream turbulence
intensity and a large turbulence scale that might be representative of combus—
tor exit phenomena. A schematic of their free jet test facility and typical
results are shown in this figure. Data are measured on a constant temperature
flat plate located at a specified radial and axial distance from the jet exit
centerline. These data, presented as Stanton number ratios, indicate that heat
transfer augmentation can be as high as 5X at a high value of free-stream tur-
bulence intensity but only 3X if the length scale is changed. These results
suggest that the designer must know a great deal more about the aerodynamic
behavior of the flow field in order to successfully predict the thermal per-—
formance of the turbine components.
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ORIGINAL PACGE I3
ROTOR-STATOR INTERACTIONS OF POOR QUALITY

In the rotating reference frame, experimental aerodynamic and heat transfer
measurements were made in the large, low-speed turbine at the United Technolo-
gies Research Center (Dring et al., 1986a; Dring et al., 1986b; Dring et al.,
1986c; Dring et al., 1987; Blair et al., 1988a; Blair et al., 1988b). Single-
stage data with both high and low-inlet turbulence were taken in phase I. The
second phase examined a one and one-half stage turbine and focused on the sec-
ond vane row. Under phase III, aerodynamic quantities such as interrow time-
averaged and rms values of velocity, flow angle, inlet turbulence, and surface
pressure distributions were measured. A photograph of the test facility is
shown in the following figure. Typical heat transfer data for both the first
stator and rotor are also shown. These data show that an increase of inlet
turbulence has a substantial impact on the first stator heat transfer. How-
ever, the impact on the rotor heat transfer is minimal. These data are also
compared with Stanton numbers calculated by a boundary-layer code and the
assumption that the boundary layer was either laminar (LAM) or fully turbulent
(TURB). These assumptions generally bracketed the data on the suction surface
of both the stator and the rotor. However, the heat transfer on the pressure
surface, especially for the high-turbulence case, was generally above even
fully turbulent levels on both airfoils. Pressure surfaces have traditionally
received less attention than suction surfaces. The high heat transfer on the
pressure surface is not readily explainable and calls for additional research,
especially modeling, on pressure surfaces.
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TIP REGION HEAT TRANSFER

The tip region of rotor blades is often a critical region and an area that
suffers substantial damage from the high~temperature environment. Arizona
State University has experimentally modeled the blade tip cavity region and
determined heat transfer rates by a mass transfer analogy with naphthylene
(Chyu et al., 1987). A schematic of the test is shown in the following figure.

The blade tip cavity is a stationary model and the relative velocity of the
shroud is represented by a moving surface at a specified gap spacing from the
blade. Stanton number results for two different cavity aspect ratios are also
shown. The heat transfer on the surfaces next to the shroud are little changed
by the aspect ratio, which is not surprising. However, the heat transfer to
the floor of the cavity is increased significantly on the downstream portion at
the lower aspect ratio. Also shown in the figures is the flow angle effect on
heat transfer. Because the airfoil turns at the tip, the cavity will be at
different angles of attack to the mean crossflow direction. The data shows a
minimal effect at an aspect ratio of 0.9 and a substantial effect at an aspect
ratio of 0.23. This dataset is really quite a new addition to a traditionally
neglected area and shows that with careful datasets and analyses one can obtain
an optimal design for tip cavities.

SIMULATED BLADE

.008 |

STANTON
NUMBER

004 —

TOP SURFACE

f:7)

V§H
T

1
i
i
I
|
1
)
i
i
I
I
S |
N\ 1
'
i
I
|
I
1
'
¢
‘
.

9.
DEG

30

;  TOP SURFACE

~ LEAKAGE
W/TIP CAVITY | FLow
1
]
]
v |
[}
|
C D ‘l
4 4
iR )
= MOVING SURFACE
.012
UPSTREAM CAVITY FLOOR DOWNSTREAM

» 0

e essa

0

CD-88-32358

3-360




PRIGINAL PAGE IS
DE POOR OUALITY

Coolant passage heat-transfer and flow measurements in a rotating reference
frame were also obtained at Pratt & Whitney Aircraft/United Technologies
Research Center (Kopper, 1984; Sturgess and Datta, 1987; Lord et al., 1987).
Experimental data were obtained for smooth-wall serpentine passages and for
serpentine passages with skewed and normal turbulators. The flow and rotation
conditions were typical of those found in actual engines. This was a very
realistic experiment. Data for both the smooth-wall and skewed turbulator
passages are shown in this figure for radial outflow, representing only a tiny
fraction of the total data involved in this very complex flow. Both datasets
are shown correlated with the rotation number except for high rotation numbers
on the high pressure surface. This is an area that requires additional
research to understand and model the physical phenomena occurring in these
passages.
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BOUNDARY-LAYER ANALYSIS

The STAN5 boundary-layer code (Crawford and Kay, 1976) (which was developed on
NASA contract at Stanford University in the mid-1970's) was modified by Allison
Gas Turbine Division to define starting points and transition length of turbu-
lent flow to accommodate their data, with and without film cooling, as well as
data in the literature. Specific recommendations were made to improve turbine
airfoil heat transfer modeling used in the boundary-layer analysis. These
recommendations address the boundary conditions, the initial condition specifi-
cation, including both velocity and thermal profiles, and modifications of con-
ventional zero-order turbulence models. The results of these improvements are
shown in the following figure, where the start of transition and its extent on
the suction surface are reasonably well characterized. For the case of shower-
head film cooling, two empirical coefficients were used to modify the free-
stream turbulence intensity and the gas stream enthalpy boundary conditions and
to permit a representative prediction of the Stanton number reduction in the
recovery region. Boundary-layer methods can be used for midspan analysis; how-
ever they require a realistic data base to provide the coefficients needed for
proper reference.
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TURBULENCE MODELING

A fundamental study on numerical turbulence modeling, directed specifically at
the airfoil in the turbine environment, was conducted at the University of
Minnesota. A modified form of the Lam-Bremhorst low-Reynolds-number k-e
turbulence model was developed to predict transitional boundary-layer flows
under conditions characteristic of gas turbine blades (Schmidt and Patankar,
1987) including both free-stream turbulence and pressure gradients.

The purpose was to extend previous work on turbulence modeling to apply the
model to transitional flows with both free-stream turbulence and pressure gra-
dients. The results of the effort are compared with the experimental data of
Allison Gas Turbine Division. The augmentation of heat transfer on the pres-
sure surface over the fully turbulent value is predicted reasonably well. In
addition, when an adverse pressure gradient correction is used, the suction
surface heat transfer data is also predicted reasonably well.

This research established a methodology for moving away from the heavy depend-

ence on empirical constants. Although boundary-layer methods will never solve
the whole problem, they will always remain important analytic tools.
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VISCOUS FLOW ANALYSIS

A fully elliptic, three-dimensional Navier-Stokes code has been under develop-
ment at Scientific Research Associates (SRA) for many years. This code was
primarily directed at inlets and nozzles. SRA, Inc., has modified the code for
turbine applications (Weinberg et al., 1985). This includes grid work for tur-
bine airfoils, adding an energy equation and turbulence modeling, and improved
user friendliness. The heat transfer predictions from the MINT code are shown
compared to the data from the Allison Gas Turbine research. The analytical-
experimental data comparison is good, however, the location of boundary-layer
transition was specified for the analytical solution.
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LOOK TO THE FUTURE

Many recent studies have been made to assess aeropropulsion technology require-~
ments into the 21st century. The consensus seems to suggest that significant
technology advances are required to meet the goals of the future. Whether the
goals are high-speed sustained flight vehicle, single-stage-to-orbit transport,
or subsonic transport, the issues for the designer are improved fuel effi-
ciency, high thrust-to-weight ratio vehicle, improved component performance
while maintaining component durability, and reduced operating and maintenance
costs. These issues will only serve to increase the opportunities available to
the researcher in aerothermal loads and structures analysis. The verifiable
predictions of unsteady flowfields with significant secondary flow phenomena
and coupled thermal-velocity profiles is a fertile research area. Very little
progress has been made to date in applying CFD techniques to the intricate and
complex coolant channels required in the hot-section components. With the
expected advances in high-temperature materials, the components with signifi-
cant aerothermal loads problems will expand beyond the airfoils and combustor
liners to shrouds, rims, seals, bearings, compressor blading, ducting, nozzles,
and other turbine components. The issues to be addressed and the technology
advances required to provide the aeropropulsion systems of the 21lst century

are quite challenging.
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